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ABSTRACT

Engineering Responses of Soft Materials †

Hang Yuan (Å*)

Engineering responses of soft materials at hierarchical time and length scales is of great

interest to both fundamental science and technological applications. In recent years, the

hybridization between emerging soft condense matters and conventional hard condense

matters keeps enriching the materials library of humankind and opens another largely-

uncharted venue for innovating the design of soft materials with controlled responses,

which has great potential future applications compatible with living systems. This work

demonstrates some preliminary e↵orts of engineering soft materials at di↵erent scales

to achieve controlled responses to various external stimuli, and ultimately lead to the

desired properties and functionalities. Utilizing a combination of experimental, compu-

tational and theoretical approaches, this work focuses on deciphering the fundamental

mechanisms behind each observed phenomena and developing theoretical frameworks for

better assisting the design of responsive soft materials. With deepening understanding of

those materials, increasing number of natural/synthetic soft materials are expected to be

engineered in the future for the continual development of technology.
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CHAPTER 1

Introduction

“Physics is about questioning, studying, probing nature.”

There is an old saying by the prominent Chinese philosopher Xun Zi (@P) in his

classic essay “On Learning” (ùf«) — “ We humans are not born any more superior

than animals. We have become superior because we learn and we learned how to make

use of materials (�P�^⇥_�ÑGéi_).” The word, materials (i), in the original

quote actually refers to any tangible tools humans leveraged in a much broader context.

However, the quote still o↵ers insight and wisdom even if we restrict the meaning of it

to the materials from a modern scientific perspective. The world we live in already has

a myriad of natural materials; meanwhile, scientists and engineers are still keep creating

innumerable artificial materials. Being fortunate to have such a repository of diverse ma-

terials, it is an eternal theme of science to learn about materials and make use of those

materials for continual innovations of technology.

Our understanding of any unknown materials start with probing its responses caused

by an external disturbance. For example, the British physicist Robert Hooke discovered

the famous Hooke’s law [1] in the 1670s, which states that the extension of a spring is

proportional to the force (F = �k�x). Here, we understand the property of an elastic

spring by simply pulling the spring and measuring the resulted restoring forces. Similarly,
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the Irish English physicist George Gabriel Stokes derived the well-known Stokes’ law [2]

in 1850s, which states that the resistive force acting on a sphere moving through a viscous

fluid is proportional to its velocity (F = 6⇡µaU). In this example, the property of a

viscous fluid is studied by perturbing the viscous fluid via a moving sphere and measuring

the corresponding drag forces from the surrounding fluid. Looking back the history of

science, countless fundamental principles of materials, such as the Fick’s law [3], the

Ohm’s law [4], the Fourier’s law [5], etc., have been discovered and they all can be viewed

in this perspective.

After hundreds of years of development in science, scientists are able to study more and

more complex materials with accumulated knowledge [6,7]. Nowadays, the relationship

between material responses and external perturbations are not necessarily linear anymore.

However, the philosophy guiding the material researches remain essentially the same: we

understand the materials by probing its responses to external perturbations. Among all

those materials studied in the past a few decades, the “hard condense matters”, which

generally deals with materials with structural rigidity, such as crystalline solids, glasses,

metals, insulators, and semiconductors, etc., are rather extensively studied due to the

success of quantum mechanics and relatively clearly-identified order in those systems. On

the other hand, the “soft condense matters” is a relatively young and emerging field with

many uncharted problems, where systems under study generally lack of a clearly-defined

order and do not involve any quantum e↵ects. Many soft materials, such as liquid crystals,

gels, foams, polymers, granular matter, emulsions and biological tissues, etc., have lots of

industrial applications and have been integrated into our daily life.
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Compared with hard condense matters, soft condense matters usually involve more

building blocks and are studied in larger length and time scales. More importantly, the

“soft” nature of soft materials enables easy hybriding with conventional hard condense

matters. This yields a large class of unexplored soft materials responsive to mechanical

forces [8,9], chemicals [10,11], electric fields [12,13], magnetic fields [14,15], light [16,17],

heat [18–20] and so on. Such “active” soft materials provide a vast design space for con-

trolling over its responses via external stimuli [21–25]. But meanwhile, couplings between

multiple response mechanisms are usually inevitably introduced. Even for a material

responsive to only a single external stimulus, the response of its active components is

commonly coupled with the response of the embedding passive medium. These couplings

make the active soft materials a more complex system to understand comprehensively.

However, “Standing on the shoulders of giants”, it’s time for a more mature science to

understand the behaviors of more complex systems, such as the unique properties of those

novel active soft materials.

Understanding the properties of the soft materials is only the first step. To make use

of materials for the benefits of humankind, the ultimate goal is to engineer the responses

of soft materials for desired functionalities. This takes one step further than just probing

the responses of materials. If probing the responses of materials provides us some pre-

liminary pictures of material properties, engineering responses requires a certain level of

abstraction of probed results to obtain a more thorough understanding of the fundamental

mechanisms. With a proper theoretical description of mechanisms and if we are fortunate

enough, we can engineer soft materials to generate specific responses under the influence

of external stimuli for targeted functions.
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To make the above statement more clear, this work centers around the theme — en-

gineering responses of soft materials — and attempts to address this topic with a few

concrete active soft material systems primarily from theoretical and computational per-

spectives. This work is composed of two major parts. The first part of this work focuses

on the individual behaviors of three di↵erent soft materials at di↵erent length and time

scales. It aims to give a flavor of the diversity of active soft materials and demonstrates

how to learn the responses of soft materials to external stimuli at an individual level with

appropriate methodologies. In the second part, this work attempts to understand the

collective responses of soft materials. It advances individual studies and is crucial for

designing desired functions from an assembly of soft materials. For readers do not have

a shared background, I have tried my best to write each chapter in a pedagogical and

self-containing manner. However, occasionally there are some cross-references between

chapters (such as Chap. 3 and Chap. 5, Chap. 5 and Chap. 6, etc.) in order to elucidate

their underlying connections for a better understanding and also avoid unnecessary rep-

etitions. In the following, brief overviews of each chapter’s content and the organization

of chapters are summarized:

Part 1: Individual Behaviors. In the first part of this work, each chapter presents a

concrete example of engineering responses of soft materials. Three di↵erent soft mate-

rial systems are selected and their individual behaviors in response to external stimuli,

such as electric/magnetic fields and light, are systematically studied via theoretical and

numeric methodologies at hierarchical scales, ranging from microscopic scale, to meso-

scopic scale and to macroscopic scale. Three chapters in the first part are arranged
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with the order of increasing length and time scales. Chapter 2 studies the morphological

changes of nanometer-sized magnetoelastic shells under the influence of an external mag-

netic field; Chapter 3 studies the oscillatory motions of micron-sized colloidal particles

driven by a direct current (DC) electric field ; Chapter 4 studies the robotic functionalities

of millimeter-sized hydrogel-metal hybrids with dual response to both light and magnetic

fields.

Chapter 2: Magnetoelastic Shells. Elastic crystalline membranes exhibit a buck-

ling transition from sphere to polyhedron. However, their morphologies are restricted to

convex polyhedra and are di�cult to externally control. In this chapter, morphological

changes of closed crystalline membranes of super-paramagnetic particles are systemati-

cally investigated. The competition of magnetic dipole-dipole interactions with the elas-

ticity of this magnetoelastic membrane leads to concave morphologies. We found that the

symmetry of the buckled membrane decreases as the magnetic field strength increases.

This gives the ability to switch the membrane morphology between convex and concave

shapes with specific symmetry and provides promising applications for membrane shape

control in the design of actuatable micro-containers for targeted delivery systems.

Chapter 3: Quincke Oscillators. Dielectric particles in weakly conducting fluids ro-

tate spontaneously when subject to strong DC electric fields. Such Quincke rotation near

a plane electrode leads to particle translation that enables physical models of active mat-

ter. In this chapter, we show that Quincke rollers can also exhibit oscillatory dynamics,

whereby particles move back and forth about a fixed location. We explain how oscillations
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arise for micron-scale particles commensurate with the thickness of a field-induced bound-

ary layer in the nonpolar electrolyte. This work enables the design of colloidal oscillators.

Chapter 4: Hydrogel Robots. An enormous challenge for science is the design of

soft matter in which internal fuels or an external energy input can generate locomotion

and shape transformations observed in living organisms. Such materials could assist in

productive functions that may range from robotics to smart management of chemical re-

actions and communication with cells. In this context, hydrated matter that can function

in aqueous media would be of great interest. We report here on the design of hydrogels

containing a sca↵old of high aspect-ratio ferromagnetic nanowires with nematic order

dispersed in a polymer network that change shape in response to light and experience

torques in rotating magnetic fields. The synergistic response enables fast walking mo-

tion of macroscopic objects in water on either flat or inclined surfaces and also guides

delivery of cargo through rolling motion and light-driven shape changes. The theoretical

description of the response to the external energy input allowed us to program specific

trajectories of hydrogel objects that were verified experimentally.

Part 2: Collective Behaviors. In the second part of this work, the focus of study

shifts from individual behaviors to collective behaviors of soft materials in response to

external stimuli. From a single object to a collection of objects, the interactions between

constituent objects of the system make the phenomena observed more diverse and also

more complex. As a starting point, colloidal particles engineered to be responsive to elec-

tric/magnetic fields serve as ideal synthetic systems for studying the collective behaviors
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of out-of-equilibrium systems. Chapter 5 focuses on the collective motions of colloidal

particles immersed in a passive fluid, whose mobility is coupled with its internal degrees

of freedom (DOF) (if any). Quincke particles is a good examples of such active colloidal

particles. With the understanding of individual behaviors of Quincke particles established

in Chapter 3, a model based on the Stokesian Dynamics (SD), supplemented with the dy-

namic equations governing its internal DOF, is developed to describe a population of

Quincke particles. Chapter 6 also studies the collective motions of active colloidal parti-

cles but focuses more on the e↵ect of surrounding “active fluid”. Ferromagnetic colloidal

particles driven by a rotating magnetic field induce active flows which modify the collec-

tive motions of particles. The concept of odd viscosity is introduced into the Stokesian

Dynamics (SD) and a parallel SD framework compatible with odd viscosity is developed

to understand the collective behaviors of a population of magnetic spinners.

Chapter 5: Collective Behaviors of Quincke Particles. Spontaneous emergence of

correlated states such as flocks and vortices are prime examples of remarkable collective

dynamics and self-organization observed in active matter. The formation of globally cor-

related polar states in geometrically confined systems proceeds through the emergence

of a macroscopic steadily rotating vortex that spontaneously selects a clockwise or coun-

terclockwise global chiral state. Here, we reveal that a global vortex formed by colloidal

rollers exhibits polar state reversal, and a subsequent formation of the collective states

upon re-energizing the system is not random. We combine experiments and simulations

to elucidate how a combination of hydrodynamic and electrostatic interactions leads to

hidden asymmetries in the local particle positional order reflecting the chiral state of the
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system. These asymmetries can be exploited to systematically command subsequent po-

lar states of active liquid through temporal control of the activity.

Chapter 6: Collective Behaviors of Magnetic Spinners. Unlike common passive

fluids, a new type of viscosity, odd viscosity, emerges in active fluids with broken time

reversal symmetry (TRS), such as those fluids consist of active spinning particles. In

recent theories and experiments, the odd viscosity have drawn increasing interests for

understanding the non-equilibrium behaviors of active materials. However, the physical

e↵ects of odd viscosity are still elusive and only backed by very limited experimental mea-

surements. Here, we study the sedimentation of a collection of driven magnetic colloidal

particles. By measuring the steady state particle density profile, interesting broaden-

ing density profiles are observed with increasing spinning frequency, which cannot be

reproduced with a traditional Stokesian Dynamics simulation. In order to elucidate the

fundamental mechanism resulting the observed phenomenon, an extended SD framework

with odd viscosity is developed, which attempts to confirm the physical role of odd vis-

cosity in such active systems.
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Part 1

Individual Behaviors
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CHAPTER 2

Magnetoelastic Shells∗

2.1. Introduction

Polyhedra are of great interest to scientists, mathematicians and engineers. They

emerge spontaneously in many fields of science. For example, single crystals take vari-

ous polyhedra shapes, fullerenes adopt beautiful truncated icosahedron shapes [27], and

bacterial micro-compartments are observed in multiple regular and irregular polyhedral

shapes [28].

Soft homogeneous elastic membranes, including hallow capsules [29–31], viral cap-

sids [32, 33], elastic biological membranes [34, 35] and crystalline vesicles [36–38], can

buckle under many conditions. Deformable capsules under pressure changes take on irreg-

ular shapes [39–42]. On the other hand, self-assembled crystalline membranes, like the

shells of viruses, generally buckle into shapes with icosahedral symmetry [43]. These icosa-

hedral membrane shapes have been explained by homogeneous elasticity theory [32,44].

Furthermore, membranes with heterogeneous elasticity have been demonstrated to form

various regular and irregular polyhedral shapes [45]. Such polyhedral morphologies are

formed by the competition between stretching energy and bending energy. Although it

is possible to engineer membrane morphologies by arranging defects in closed membrane

topologies [46], these morphologies cannot go beyond polyhedra.

∗This chapter is primarily based on the published work [26] of Hang Yuan and Monica Olvera de la
Cruz†, Crystalline membrane morphology beyond polyhedra, Phys. Rev. E, Vol. 100, p. 012610,
2019, with modified notations and extended details to comply with the structure of this work.

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.012610
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Here, we explore the possibility to create new closed shell morphologies, other than

polyhedra, in a controllable manner. For this purpose, we consider elastic membranes of

super-paramagnetic particles because of the exceptional penetration of magnetic fields

and bio-compatibility. This provides opportunities to design magnetically responsive

nanocarriers for targeted delivery systems in therapeutic applications [47–52]. Mag-

netoelastic materials form rich morphologies [53,54] and can accomplish multimodal lo-

comotion [55,56] as well as deformations that generate forces between surfaces [57] when

directed by magnetic fields. The versatility of magnetoelastic filaments, which consist

of super-paramagnetic particles connected by elastic linkers, has also been demonstrated

experimentally [58–63] and numerically [64–66].

Compared to magnetoelastic filaments and open membranes, closed magnetoelastic

membranes, which have additional topological constraints, are found here to generate

specific symmetries due to the interplay between nonlinear elasticity and magnetic dipole-

dipole interactions. In this chapter, a discretized model of magnetoelastic membranes is

developed and numerically simulated with the Car–Parrinello (C-P) Molecular Dynamics

(MD) simulations [67] to find the minimum energy configurations of magnetoelastic mem-

branes under the influence of an external magnetic field [Sec. 2.2]. Following that, the

equilibrium morphologies of the closed magnetoelastic membranes with external magnetic

fields are systematically investigated for cases with and without the volume constraint

[Sec. 2.3]. And the whole chapter concludes with a brief discussion and possible future

works [Sec. 2.4].
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2.2. Discretized model of magnetoelastic membranes

Unlike the traditional MD, the C-P MD approach relies on the Hamiltonian of the

system H and obtains its force fields by taking derivatives of the overall Hamiltonian with

respect to particles’ position. Following the idea of the C-P MD, the e↵ective Hamilton-

ian describing the magnetoelastic membranes at the discretization limit is developed first.

Then, the corresponding interactions derived from the Hamiltonian of the magnetoelastic

membranes are elaborated and implemented into traditional MD simulations.

2.2.1. Hamiltonian of elastic membranes

As dictated by Euler’s polyhedron formula [68], we start by triangulating a spherical shell

with twelve isolated 5-fold disclinations. The disclinations are positioned on the vertices

of an inscribed icosahedron [Fig. 2.1] to minimize the interactions between them [69], as

proposed by Caspar and Klug [70].

The elastic component of the Hamiltonian of a magnetoelastic membrane, following

the discretization scheme of Nelson et al. [44], is written as

(2.1) He =
X

e2E

1

2
k (|re

1
� re

2
|� `0)

2 +
X

e2E

1

2
̃ |ne

1
� ne

2
|2

where k is microscopic stretching constant and ̃ is microscopic bending rigidity. The sum

is over all e elements of E, which is the set of all edges; re
1
and re

2
are two vertices of the

edge e; and ne

1
and ne

2
are normal vectors of the two adjacent triangles of the edge e; and

`0 is the equilibrium length. Note that the corresponding continuum limit of the above
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Figure 2.1. Mesh configuration of the spherical shell according to Caspar
and Klug construction, which is characterized by two integers h and k [70].
Above figure shows the example of (6, 6) structure and it has 1082 vertices,
3240 edges and 2160 faces. Blue vertices correspond to the locations of
5-fold disclinations and there are 12 disclinations in total which are located
on vertices of an inscribed icosahedron.

discretized Hamiltonian is mesh dependent [71]. With the above described triangulation

of a spherical shell, it has been shown that in the continuum limit [44,72] Young’s mod-

ulus Y= 2kp
3
, Poisson’s ratio ⌫= 1

3
and bending rigidity = ̃p

3
[see Sec. 2.2.3.2].

Incompressible homogeneous isotropic linear elastic membranes (⌫ = 1/3) of radius

R can be described by two elastic parameters Y and . Then, a single dimensionless

parameter, � = Y R
2


, called the Föppl-von Kármán (FvK) parameter [73], completely

determines the buckling transition of such systems. Nelson et al. [32] have shown that

homogeneous elastic membranes undergo a spontaneous buckling transition from sphere
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to icosahedron when � > �
⇤ = 154, where 154 is the value of �⇤ for a flat disk.

2.2.2. Magnetic dipole-dipole interactions

In our study, we place a small super-paramagnetic particle (which does not have a perma-

nent magnetization and the induced magnetization aligns with the external fields) at each

vertex. An external magnetic field induces a magnetic dipole on each vertex. Therefore,

an additional term for magnetic dipole-dipole interactions is added into the Hamiltonian

of the system:

(2.2) Hm = �µ0

4⇡

X

ri,rj2V,i 6=j

1

|rij|3
⇥
3 (µ

i
· r̂ij)

�
µ

j
· r̂ij

�
� µ

i
· µ

j

⇤

where µ0 is the absolute magnetic permeability in vacuum, µi is the magnetic dipole mo-

ment at vertex i, V is the set of all vertices, ri is the position vector of vertex i, rij = rj�ri

and r̂ij = rij/ |rij| and the sum is over i 6= j.

2.2.2.1. nearest neighbor approximation. As the magnetic dipole-dipole interaction

is long-range and anisotropic, the exact expression shown in Eqn. 2.2 is di�cult for

theoretical analysis. In order to get more physical insights, a simplified form, which

considers only nearest neighbor interactions, is helpful for extracting another important

dimensionless parameter.

For simplicity, we further assume the magnetic filed strength is strong enough that

the induced magnetic dipole of each super-paramagnetic particles always aligns with the

external magnetic field. And we only consider the case where a magnetoelastic membrane
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is composed of the same type of super-paramagnetic particles. Then, the induced magnetic

dipole moments of each super-paramagnetic particles are the same, i.e. µ
i
= µ = µm̂,

where µ is the magnetic dipole moment of each super-paramagnetic particles, µ = |µ|

and m̂ is the direction of the external magnetic field.

Then, the original magnetic dipole-dipole interaction [Eqn. 2.2] can be simplified by

including only nearest neighbor interactions:

(2.3)

Hm ⇡ �µ0

4⇡

X

ri,rj2V,i 6=j

1

|rij|3
⇥
3 (µ · r̂ij)2 � µ

2
⇤

⇡ �µ0

4⇡

X

ri2V

X

rj2neighbors of i

1

|rij|3
⇥
3 (µ · r̂ij)2 � µ

2
⇤

=
µ0µ

2

4⇡

X

ri2V

X

rj2neighbors of i

1

|rij|3
⇥
1� 3 (m̂ · r̂ij)2

⇤

2.2.2.2. inextensible limit. Furthermore, we assume the membrane is inextensible,

which means that the stretching constant k is large enough and thus all edge lengths are

close to the equilibrium length `0. With this assumption, all vertices are roughly equally

distant and there are only two types of vertices: vertices with five neighbors (five-fold

disclinations) and vertices with six neighbors. Then, the magnetic energy associated with

each vertex type can be calculated accordingly:

(1) Hexagonal vertex

In this case, the vertices have six neighbors which locate on vertices of a regular

hexagon. Assuming the equilibrium length `0 is small enough that locally all

six neighbors are roughly in the same plane. By choosing z-axis as the normal

direction of this regular hexagon (moving frame), locations of six neighbors can be

parametrized as rj = `0r̂j = `0

�
cos j⇡

3
, sin j⇡

3
, 0
�
, j = 0, · · · , 5 and the direction
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of the external magnetic field in this coordinate system can be expressed as

m̂ = (ri
t
cos ✓i

t
, r

i

t
sin ✓i

t
,m

i

n
), where r

i

t
is the magnitude of in-plane component

of m̂ at vertex i, ✓i
t
is the corresponding polar angle in the plane and m

i

n
is the

magnitude of out-of-plane component of m̂ at vertex i. Note that the components

of m̂ in the chosen coordinate system depend on the location of vertex i. Then,

the magnetic energy associated with each hexagonal vertex is

(2.4)
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(2) Pentagonal vertex

By similarly choosing the coordinate system, the locations of neighbor vertices

in the pentagonal case can be written as rj = `0r̂j = `0

�
cos 2j⇡

5
, sin 2j⇡

5
, 0
�
, j =

0, · · · , 4. The magnetic energy associated with each of the disclination vertices

is:

(2.5)
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Figure 2.2. A schematic drawing of the local coordinate system defined for
a patch of magnetoelastic membranes. m̂ = (sin ✓ cos�, sin ✓ sin�, cos ✓)
represents the direction of a precessing magnetic field around the z-axis,
where ✓ and � are the polar and azimuthal angles, respectively; n̂i denotes
the unit outer normal vector of i-th vertex and ri

t
is the corresponding in-

plane components of m̂ at the position of i-th vertex, i.e. ri
t
= m̂�(m̂·n̂i)n̂i

.

2.2.2.3. fast precessing limit. Without loss of generality, we consider a precessing

external magnetic field around the z-direction as shown in Fig. 2.2. Then, the direction of

the external magnetic field is m̂ = (sin ✓ cos�, sin ✓ sin�, cos ✓) and the unit normal vector

of i-th vertex is n̂i = (ni

x
, n

i

y
, n

i

z
) in the lab coordinate system. Then, the magnitude of

in-plane components of m̂ at each vertex i is:

(2.6)
r
i

t

2

= [m̂� (m̂ · n̂i)n̂i]
2 = 1� (m̂ · n̂i)

2

= 1�
�
sin ✓ cos�ni

x
+ sin ✓ sin�ni

y
+ cos ✓ni

z

�2
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For a fast precessing external magnetic field, i.e. the time scale of elastic deformation is

much larger than the period of precessing, n̂i is approximately time-independent during

periods of precessing. Then,

(2.7)

D
r
i

t

2
E
= 1� 1

2
sin2

✓

⇣
n
i

x

2

+ n
i

y

2
⌘
+ cos2 ✓ni

z

2

= 1� 1

2

h
sin2

✓ �
�
1� 3 cos2 ✓

�
n
i

z

2
i

where h·i indicates time average over periods of precessing and we can define that

(2.8) M̃ =
µ0µ
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Therefore, the total magnetic energy of the membrane with the nearest neighbor approx-

imation in the inextensible and fast-precessing limit is:

(2.9) Hm ⇡

0

@
X

ri2Vhex

6 +
X

ri2Vpen
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1

A M̃(µ, ✓)

✓
n
i
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◆

2.2.2.4. continuum limit. We can bring the above discretization limit expression into

the continuum limit by associating each vertex with its Voronoi cell area. The area of a

regular hexagon with edge length `0 is 3
p
3

2
`
2

0
and the corresponding Voronoi cell area of

hexagonal vertex is
p
3

2
`
2

0
. Then, the magnetic energy density in the continuum limit is:

(2.10) ✏M =
✏hex
p
3

2
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� 1

3

◆

where the magnetic modulus M is defined as

(2.11) M(µ, ✓) = 2
p
3

µ0

4⇡`0

✓
3µ

`
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◆2✓
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3
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The above magnetic modulus changes its sign around ✓
⇤ = arccos

⇣q
1

3

⌘
⇡ 54.7�, which

enables interesting behaviors controlled by precessing angle ✓ [57,62,64]. And also be

aware that it has an addition factor of 2
p
3 comparing with the result derived for a

square mesh [74]. Finally, the total magnetic energy in the continuum limit can be

simply expressed as a surface integral of the magnetic energy density:

(2.12) Hm ⇡
I

1

2
M

✓
n
2

z
� 1

3

◆
dS

If only a static magnetic field along z-axis is applied, corresponding results can be obtained

by simply letting ✓ = 0, i.e.

(2.13) M(µ, ✓ = 0) = 2
p
3
µ0

4⇡l0

✓
3µ

l
2

0

◆2 2

3

2.2.2.5. approximate magnetic energy expression. To sum up, with nearest neigh-

bor approximation in the inextensible limit, the exact magnetic energy [Eqn. 2.2] under

a static magnetic field can be simplified as

(2.14) Hm ⇡

0

@
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6 +
X

ri2Vpen
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3
, µ is the induced magnetic dipole moment which assumes only one

type of super-paramagnetic particles, Vhex is the set of vertices with 6 neighbors, Vpen is

the set of vertices with 5 neighbors and n
i

z
is the z component of normal vector of i-th

vertex.

M̃ gives the characteristic energy scale for each nearest neighbor pair of magnetic dipole-

dipole interactions in the discretization limit. Similar to the case of elastic membranes, a



ar
ch
iv
e

50

magnetic modulus can be defined in the continuum limit as M= 8
p
3M̃

`
2
0
, and a dimension-

less parameter, � = MR
2


, called magnetoelastic parameter [74] , can be similarly defined.

The magnetoelastic parameter � characterizes the relative strength between magnetic

energy and bending energy.

2.2.3. Hamiltonian of magnetoelastic membranes

Therefore, the magnetoelastic membrane has one additional energy competition from

magnetic dipole-dipole interactions, which is tunable via an external magnetic field. The

total magnetoelastic energy of the membrane Hem is the sum of elastic and magnetic

energies:

(2.15)
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2.2.3.1. nondimensionalization. By choosing the unit energy as ̃ and the unit length

as R (radius of the initial spherical shell), the above expression can be cast into a dimen-

sionless form:

(2.16)
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In the process of nondimensionalization, two dimensionless parameters naturally emerge:

(2.17) �̃ =
kR

2

̃
, �̃ =

M̃

̃

where �̃ is the “microscopic Föppl-von Kármán (FvK) parameter”, which gives charac-

teristic relative strength between stretching interaction and bending interaction at the

discretization limit; �̃ is the “microscopic magnetoelastic parameter”, which gives char-

acteristic relative strength between magnetic dipole-dipole interaction and bending inter-

action at the discretization limit.

2.2.3.2. relationship between discretization and continuum limit. We can also

bring the system into the continuum limit, which gives two more familiar dimensionless

parameters mentioned before:

(2.18) � =
Y R

2


, � =

MR
2
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where � is the Föppl-von Kármán (FvK) parameter, which gives characteristic relative

strength between stretching interaction and bending interaction; � is the magnetoelastic

parameter, which gives characteristic relative strength between magnetic dipole-dipole

interaction and bending interaction. Also note that � / M / µ
2 and induced magnetic

dipole moment µ is proportional to the strength of external magnetic field, which means

that � can be directly controlled by an external magnetic field. Correspondences between

parameters in the discretization limit and the continuum limit [44,72] are listed below:

(2.19) Y =
2kp
3
, =

̃p
3
,M =

8
p
3

l
2

0

M̃

note that those pre-factors are topology dependent [72] and above values are derived for

spherical geometry.

2.2.3.3. dimensionless magnetoelastic energy. Finally, the dimensionless form of

total magnetoelastic energy can be written as:

(2.20) H̃em [{ri}; �,� ] =
Hem


= H̃e [{ri}; �] + H̃m [{ri};� ]

where tilde indicates dimensionless quantities and note that H̃e and H̃m depend linearly

on � and � [Eqn. 2.18] respectively.

2.2.4. Volume constraint

Besides magnetic and elastic contributions, a volume constraint [75] is also imposed on

the membranes to account for internal pressure. This internal pressure is necessary when
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the membrane is not penetrable, which is modeled as:

(2.21) Hv = ⇤

 
X

k

⌦k � Vref

!2

where ⌦k [Eqn. 2.22] is the signed volume of the tetrahedron extended by k-th triangle

on the membrane, V ref is the reference volume of the membrane and ⇤ is the Lagrange

multiplier which characterizes the system pressure. Vref is set as volume of the icosahe-

dron after buckling and ⇤ is set to a large enough value such that the membrane has

additional rigidity from due to the volume constraint. The volume constraint is used

to capture the e↵ect from the environment surrounding the magnetoelastic membrane

and eliminate possible crumpled states [76]. Corresponding cases without the volume

constraint are also explored, and their morphologies generally do not di↵er significantly

from the cases with the volume constraint. Some crumpled states and collapsed states are

observed in high field strength limit for the cases without the volume constraint [Fig. 2.7].

2.2.4.1. simulation details. The simulations are performed in LAMMPS [77]. All

interactions in the Hamiltonian of the system can be mapped to commonly available in-

teractions in LAMMPS. More specifically, stretching interactions [Eqn. 2.1] are modeled

as harmonic bond interactions, bending interactions [Eqn. 2.1] are modeled as harmonic

dihedral interactions, and magnetic dipole-dipole interactions [Eqn. 2.2] are modeled as

electric dipole-dipole interactions (both electric and magnetic dipole-dipole interactions

are equivalent in reduced units). Shifted L-J interactions are included to account for fi-

nite size e↵ect of the super-paramagnetic particles and also to increase the stability of the

collapsed state simulation. The cuto↵ of the L-J interactions is set as 0.6 of equilibrium
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length `0. The equilibrium length `0 is set as the average bond length of the initial mesh.

Each vertex is represented as a point dipole in the simulations. The computation of

the long range magnetic dipole-dipole interactions is calculated without a cuto↵ by using

the long range solver PPPM/dipole [78] in LAMMPS. Because of properties of super-

paramagnetic particles, directions of each dipole are always aligned with the external

magnetic field. Besides, only translational degrees of freedom are updated in each time

step. Rotational degrees of freedom of each vertex are ignored because super-paramagnetic

particles don’t have permanent magnetization which decouples magnetics and elasticity.

Initial mesh of the membrane is constructed with the scheme proposed by Caspar and

Klug [70]and the connectivity of the membrane is preserved during simulations. Di↵erent

mesh choices (di↵erent h,k numbers) are tested to ensure that the observed phenomena

are not mesh dependent. All simulations mentioned in this work are performed with

mesh (6, 6), which has 1082 vertices, 3240 edges and 2160 faces. We use reduced units

for all simulations; the unit energy is ̃ and the unit length is R (radius of initial mesh).

By choosing a di↵erent stretching constant for harmonic bond interactions(k) and the

induced magnetic dipole moment (µ), all possible dimensionless parameters pair (�,� )

can be constructed accordingly.

Kinetic energy is also assigned to each vertex to give a fictitious temperature of the

system. The simulations start at high temperature and are gradually annealed to find the

minimum energy configuration of the system. This annealing process is repeated several
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times to ensure that the system is not trapped in local minima.

2.2.4.2. implementation of the volume constraint. The volume constraint is added

when the membrane is not penetrable, which is implemented as a fix package of LAMMPS.

Additional potential energy from the volume constraint is modeled as shown in Eqn. 2.21.

Then, taking derivatives of the above potential with respect to each vertex’s position

gives the constraint forces due to the volume constraint. For example, consider a triangle

consists of three vertices: r1, r2, r3. The signed volume of the tetrahedron extended by

this triangle is:

(2.22) ⌦k =
1

6
r1 · r2 ⇥ r3

Taking derivatives of ⌦k with respect to r1 is

(2.23) r⌦k|r1 =
1

6
(�y3z2 + y2z3, x3z2 � x2z3,�x3y2 + x2y3)

Other cases are cyclic permutations of the above result. Note that the interaction from

the volume constraint is not pair-like interaction and total constraint force of vertex i is:

(2.24) f
(i)

constraint
= 2⇤

X

k2neighbors of i

r⌦k|ri

2.2.4.3. Computation of curvatures. Computation of curvatures generally requires a

surface is di↵erentiable [79]. However, in the discretization limit, the surface is composed

of flat triangles and is a piece-wise constant surface, which has only C0 continuity. Then,

computation of curvatures on the triangulated surface needs additional cares.
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The method used in this work to compute the curvatures of the magnetoelastic mem-

branes follows the work of Meyer et al. [80], which is introduced in the context of computer

graphics. By associating each vertex with its corresponding Voronoi cell, the mean cur-

vature vector K and the Gaussian curvature G are calculated by following formulae:

(2.25) K(ri) =
1

2A(ri)

X

j2neighbors of i

(cot↵ij + cot �ij) (ri � rj)

(2.26) G(ri) =

 
2⇡ �

X

j2external angles

✓j

!
/A(ri)

where ↵ij and �ij are two angles opposite to the edge defined by vertices ri and rj. A(ri)

is the area of Voronoi cell of vertex i:

(2.27) A(ri) =
1

8

X

j2neighbors of i

(cot↵ij + cot �ij) |ri � rj|2

and ✓j are the external angles of the Voronoi cell around vertex i. Note that when

triangles are obtuse, A(ri) needs to be modified [80] to make sure that Voronoi cells are

non-overlapping, which in turn makes sure that the sum of Gaussian curvature fulfills

the Gauss-Bonnet Theorem (GBT) [79]. By comparing the direction of mean curvature

vector K with the exterior normal direction of the membrane, a sign can be associated

with the mean curvature value to distinguish convex and concave regions of the membrane

[see Fig. 2.5].
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2.3. Morphologies of magnetoelastic membranes

2.3.1. Magnetoelastic membranes with volume constraint

A collection of possible morphologies of magnetoelastic membranes obtained by systemat-

ically varying the two dimensionless parameters, the Föppl-von Kármán parameter � and

the magnetoelastic parameter � , are shown in Fig. 2.3. Without magnetic dipole-dipole

interactions (�=0), when � < �
⇤, the homogeneous elastic crystalline membrane tends to

stay spherical [Fig. 2.3a] and when � > �
⇤ it buckles into an icosahedron [Fig. 2.3b] as

expected in the conventional homogeneous elastic crystalline membranes [32].

At moderate strengths of the magnetic dipole-dipole interaction, as shown in the sec-

ond row of Fig. 2.3, the structures deform since the magnetic dipoles prefer to line up

and stay closer to each other to minimize the magnetic energy. When the membrane is

relatively soft (� < �
⇤), the membrane tends to elongate along the direction of the exter-

nal magnetic field. However, this is opposed by elastic interactions since elasticity prefers

the membrane to stay spherical, resulting in an ellipsoid like membrane morphology as

shown in Fig. 2.3c.

When the membrane is relatively sti↵ (� > �
⇤), the membrane undergoes an elasti-

cally driven buckling transition. The interplay between nonlinear elasticity and magnetic

dipole-dipole interactions distorts the icosahedron. The flat regions of the icosahedron

bend inward to reduce the distance between magnetic dipoles and disclinations pair up,

resulting in a star-like morphology with six ridges as shown in Fig. 2.3d. Unlike the
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(a)

(c)

(e) (f)

(d)

(b)

z z

Figure 2.3. A collection of representative minimum energy morphologies
of closed magnetoelastic membranes with di↵erent parameters pair (�,� ):
Föppl-von Kármán (FvK) parameter � and magnetoelastic parameter � ; �
increases from left to right and � increases from top to bottom. (a) spherical
shape (100,0); (b) icosahedral shape (1000,0); (c) ellipsoidal shape (100,25);
(d) star shape with six ridges (1000,100); (e) cylindrical shape (100,50); (f)
star shape with four ridges (1000,200). Note that first column is shown
from y-direction and second column is shown from z-direction to give better
illustration of morphologies. Arrows indicate the direction of the external
magnetic field.
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conventional convex polyhedral morphologies of the purely elastic membranes, the mag-

netoelastic membranes develop concave regions.

Then, consider the case of strong magnetic dipole-dipole interactions, as shown in the

third row of Fig. 2.3. The elastic energy becomes comparable with the magnetic energy

until the membrane is highly deformed. In this regime, the competition between magnetic

energy and elastic energy results in another new family of morphologies.

When the membrane is easily deformed (� < �
⇤), magnetic dipole-dipole interactions

tend to elongate the membrane further along the direction of the external magnetic field

in this high field strength regime. However, the elastic energy can no longer hold the

membrane in a spherical or ellipsoidal shape. The membrane forms a cylindrical shape,

as shown in Fig. 2.3e, to minimize the magnetic energy. Although the bending energy is

high along edges of two end caps of the cylinder, the total energy decreases by lining up

vertices on the side surface of the cylinder.

When the membrane is relatively rigid (� > �
⇤), the elastic energy tries to preserve the

total surface area of the membrane since stretching is much more expensive than bending

in this case. Meanwhile, the magnetic dipole-dipole interaction tries to reduce the total

volume of the membrane to minimize the magnetic energy. This competition, combined

with the nonlinearity introduced by the twelve disclinations, results in a star-like mor-

phology with four ridges as shown in Fig. 2.3f.

After showing representative membrane morphologies with the volume constraint in

Fig. 2.3. A more detailed diagram of membrane morphologies can be constructed [Fig.
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2.4]. Simulations with di↵erent dimensionless parameters (�,� ) are represented by blue

cross symbols in Fig. 2.4. Colors are obtained by the linear interpretation based on

simulation data points, which represent the magnetic energy contributions. The magnetic

energy contribution �m is defined as:

�m =
|Hm|

|Hm|+He

where Hm and He are the total magnetic energy and elastic energy respectively. Based on

the magnetic energy contributions, two red contour lines (⇠ 30% and ⇠ 60%) are drawn

to indicate estimated magnetically induced membrane morphologies transition points.

Combining with the elastic buckling transition point �⇤ ⇠ 154 (blue vertical dash line),

the phase space of the system is roughly divided into regions which correspond to di↵erent

possible membrane morphologies. Below the elastic buckling transition point (� < �
⇤),

the membrane morphologies change from spherical shapes (region A), to ellipsoidal shapes

(region C) and to cylindrical shapes (region E) with increasing magnetoelastic parameter

� . Above the elastic buckling transition point (� > �
⇤), membrane morphologies change

from icosahedral shapes (region B), to star shapes with six ridges (region D) and to star

shapes with four ridges (region F) with increasing magnetoelastic parameter � . Blank

regions correspond to an extremely strong magnetic field strength limit, where membrane

morphologies are generally two-fold symmetric or collapsed.
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Figure 2.4. A shape diagram for the closed homogeneous magnetoelastic
crystalline membranes with the volume constraint. � is the Föppl-von
Kármán (FvK) parameter and � is the magnetoelastic parameter. Blue
crosses represent data points from simulations. Colors represent the mag-
netic energy contribution �m. Blue vertical dash line indicates the elastic
buckling transition point and two red contour lines (30% and 60%) indi-
cate estimations of magnetically induced membrane morphologies transition
points. Di↵erent regions in the shape diagram correspond to di↵erent mem-
brane morphologies: A. spheres; B. icosahedra; C. ellipsoids; D. star shapes
with six ridges; E. cylinders; F. star shapes with four ridges.



ar
ch
iv
e

62

2.3.2. Curvature distributions of magnetoelastic membranes

Among all these mentioned morphologies of the magnetoelastic membrane, the � ⇠ 1000

cases are particularly interesting because this regime corresponds to a typical FvK pa-

rameter of viral shells [32]. In this regime, where both nonlinear elasticity and magnetic

dipole-dipole interactions can be significant, we find that the magnetoelastic membrane

tends to choose configurations that decrease symmetry with increasing external magnetic

field strength. This point is illustrated by plotting the mean curvature and energy distri-

bution of the membrane in spherical coordinates [Fig. 2.5].

In the weak field strength limit, the membrane forms an icosahedron [Fig. 2.5a]

with five-fold rotational symmetry around the z-axis as shown in Fig. 2.5b and 2.5c.

In this limit, the elastic energy dominates and the magnetic energy is negligible [Fig.

2.5d]. With a moderate external magnetic field strength, the membrane morphology has

six ridges [Fig. 2.5e]. However, the 12 isolated disclinations prefer to pair up and form

ridges connecting each pair of disclinations [81]. These disclinations pairs are arranged

alternatively to maximize the mutual distance in order to reduce interactions between

disclinations [69] and ridges [82], as shown in Fig. 2.5f and 2.5g. Because of this alterna-

tive arrangement, the membrane with six ridges has only three-fold rotational symmetry

around the z-axis, which is also reflected by the magnetic energy distribution [Fig. 2.5h].

If the field strength is further increased, the membrane starts to form morphologies with

four ridges [Fig. 2.5i]. In this regime, two pairs of disclinations break and there is a

single disclination near each of the four concave regions as show in Fig. 2.5j and 2.5k.

Therefore, the symmetry of the membrane reduces to two-fold rotational symmetry [Fig.

2.5j, k and l] around the z-axis. In the extremely high field strengths regime, the magnetic
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Figure 2.5. membrane morphologies(first column), mean curvature distri-
bution(second column), elastic energy distribution(third column) and mag-
netic energy distribution(fourth column) showing symmetry of magnetoe-
lastic membranes. Membrane morphologies in the first column are shown
from z-direction. All other plots are shown in spherical coordinates. Hor-
izontal axis is polar angle ✓ 2 [0, ⇡] and vertical axis is azimuthal angle
� 2 (�⇡, ⇡]. Mean curvatures are chose to be signed values where positive
values indicate convex regions and negative values indicate concave regions.
Elastic energy is sum of stretching energy (bond interaction) and bending
energy (dihedral interaction). Magnetic energy is sum of magnetic dipole-
dipole interactions. Energy from Lennard-Jones interactions is negligible
in all three cases. Parameters pairs (�,� ) of membranes in each row are:
(1000,1), (1000,100), (1000,200) from top to bottom.

energy completely dominates and the membrane collapses and takes one-fold rotational

symmetry (the collapsed state is not shown in Fig. 2.5).

A natural question is to ask why the four-fold rotational symmetry is missing among

all these above mentioned morphologies. This is due to two important facts: the ridges

connecting each pair of disclinations are energetically expensive to break up [83] and
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there are e↵ective repulsive interactions between disclinations [69] and ridges [82]. The

existence of four-fold symmetric structures requires that 12 disclinations are divided into

4 groups of 3 disclinations, which needs strong enough external magnetic field strength to

break up the ridge structures. Even these 4 groups of 3 disclinations are formed, four-fold

symmetric structures are still not energetically favorable since the total energy of the

system can be further reduced by choosing an alternative arrangement to increase mutual

distances and reduce repulsive interactions between disclinations and ridges. This alter-

native arrangement brings the system directly into two-fold symmetric structures, which

makes four-fold symmetric structures are never observed as a lowest energy configuration

in our simulations.

2.3.3. Magnetoelastic membranes without volume constraint

We also explore cases without the volume constraint, which correspond to the situation

that materials inside the membrane can freely penetrate the membrane. Possible mor-

phologies of the membranes without the volume constraint are shown in Fig. 2.6.

When compared to the results with the volume constraint [Fig. 2.3], the volume con-

straint shifts the transition points between di↵erent morphologies, which is expected and

controlled by the parameters Vref and ⇤. The morphologies without the volume constraint

generally do not di↵er significantly from cases with the volume constraint, except in cases

with a high magnetic field strength.

For example, as shown in Fig. 2.6e, the membrane morphology becomes “pancake”

shape when the membrane is relatively soft (� < �
⇤) in the high field strength limit. The
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“pancake” shape brings magnetic dipoles even closer than cylindrical shape [Fig. 2.3e]

since there is no additional volume constraint to prevent the membrane from shrinking.

When the membrane is relatively sti↵ (� > �
⇤) in the high field strength limit, many

crumpled states or collapsed states are observed as shown in Fig. 2.7. These morphologies

are di�cult to describe and generally di↵er a lot from each other. The magnetoelastic

membranes in those cases are highly nonlinear and both magnetic and elastic energy are

important. Small fluctuations of the membrane disclinations can change the membrane

morphology significantly in those cases and lead to di↵erent crumpled states or collapsed

states. Without the volume constraint, the membranes resist magnetic dipole-dipole inter-

actions by elasticity (although L-J interactions also help stabilizing the membrane when

the membrane is collapsed). After reaching a certain magnetic field strength, the mem-

branes cannot hold a definite shape anymore and are free to crumple or collapse since there

is no volume constraint to restrict these crumpling or collapsing processes. This creates a

family of complicated morphologies, which are strongly deformed. Selected representative

crumpled and collapsed morphologies shown in Fig. 2.7 are repeated with finer mesh size

(up to mesh (12,12) which has 4322 vertices) to ensure that these morphologies do not

result from insu�cient discretization. It is interesting to notice that these morphologies

in Fig. 2.7 (� > �
⇤ in high magnetic field strength limit), still roughly maintain two-fold

symmetry for some states [Fig. 2.7a, c, and d].



ar
ch
iv
e

66

(a) (b)

(c) (d)

(e) (f)

Figure 2.6. A collection of representative minimum energy morphologies of
the closed magnetoelastic membrane without the volume constraint. Dif-
ferent parameters pairs (�,� ), Föppl-von Kármán (FvK) parameter � and
magnetoelastic parameter � , are explored. � increases from left to right
and � increases from top to bottom. (a) spherical shape (100,0); (b) icosa-
hedral shape (1000,0); (c) ellipsoidal shape (100,20); (d) star shape with
six ridges (1000,80); (e) pancake shape (100,40); (f) star shape with four
ridges (1000,150). Note that (a) and (c) are shown from y-direction, (e) is
shown in angled view and second column is shown from z-direction to give
better illustration of morphologies.
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Figure 2.7. Examples of crumpled states and collapsed states. These mor-
phologies are observed in the cases without the volume constraint in the
high magnetic field strength limit. Their corresponding parameters pairs
(�,� ) are: (a) (2000,600); (b) (4000,200); (c) (6000,500); (d) (8000, 400).
All of them are shown from z-direction and are represented by triangulation
meshes to show overlapping regions.

2.4. Discussion and future works

In summary, crystalline magnetoelastic membranes exhibit concave morphologies be-

yond the conventional polyhedral shapes found in elastic membranes. Magnetic dipole-

dipole interactions give an additional control parameter which is the magnetoelastic pa-

rameter � . Combining with the Föppl-von Kármán (FvK) parameter � in the elastic

membranes, these two dimensionless parameters provide guidelines for analyzing proper-

ties of crystalline magnetoelastic membranes [Eqn. 2.20]. Importantly, since � is hard

to change once a membrane is assembled, the magnetoelastic parameter, which can be
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easily manipulated by an external magnetic field, provides a way to tune the membrane

morphology between convex shapes and concave shapes with specific symmetry.

Exciting applications, including reversible membrane shape control, design of micro-

containers, and targeted drug delivery, are expected for the closed crystalline magne-

toelastic membranes. For example, since the volume to surface ratio of magnetoelastic

membranes can be highly reduced by imposing an external magnetic field, the concentra-

tion inside can be much higher than that in the outside environment. This morphological

change induced by the external magnetic field can facilitate release of cargoes. Therefore,

the magnetoelastic membrane can be used as a container to carry and protect volatile or

toxic molecules and release them in a targeted region labelled by the external magnetic

fields.

For future works, it’s been a long term pursuit of scientists and engineers to design

controllable artificial robots for tasks in microscopic world [84–86]. Living organisms

have been constantly providing inspirations for such challenges [87,88]. During the long

evolution history of those living organisms, diverse morphologies and propulsion mecha-

nism have been developed to adapt to their unique demands of functionalities and flow

environments in the viscous world. An important common feature of all those developed

morphologies of living organisms is that there is a membrane structure which separate its

interior content from the outer environment. This boundary protects the living organism

from taking unwanted elements in the environment and provides an isolated chamber for

essential chemical reactions and metabolic processes. Therefore, the closed magnetoelas-

tic membranes are promising candidate materials for the design of microscopic artificial

robots. Experimentally, such magnetoelastic membranes are envisioned to be synthesized
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by crosslinking super-paramagnetic nano-particles via polymers [58,62,89]. As inspired

by biology, possible future e↵orts can be categorized into two primary directions: mem-

brane morphologies and locomotion mechanisms.

membrane morphologies. As demonstrated in this chapter, even a simple static mag-

netic field is able to induce diverse morphological changes of magnetoelastic membranes

in a controllable manner. A natural extension will be study the dynamic behaviors of

magnetoelastic membranes under the influence of a precessing magnetic field. Because

the e↵ective magnetic modulus M [Sec. 2.2] changes from positive to negative with an

increasing precessing angle [57,64,65], it provides another control parameter for tuning

the magnetoelastic parameter � in additional to the magnetic field strength and even

more diverse morphological changes are expected.

Another direction along the membrane morphologies worth exploring is to introduc-

ing heterogeneous elasticity [45,90–92] as it’s common to find membranes consisting of

multiple components [28, 93] in biology. A simplest construction is a Janus-type two-

component magnetoelastic membrane [Fig. 2.8]. Then, each type of materials has its

own set of FvK and magnetoelastic parameters (i.e. �A,�A and �B,�B), which provides

a much larger parameter space to design desired membrane morphologies.

locomotion mechanisms. Besides the study of membrane morphologies, a proper de-

sign of controllable locomotion is desired for turning an immobile membrane-structure

into a “micro-robot”. The motility strategies based on flagella [94, 95], cilia [96, 97]

and euglenoid movement [98] are all successfully locomotion mechanisms observed in

living organisms. Due to the constraints of low Reynolds number (Re) environments
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Figure 2.8. A mesh presentation of the Janus-type two-component magne-
toelastic membrane. Above figure shows the example of (6, 6) structure and
it has 1082 vertices, 3240 edges and 2160 faces. Red and blue colored re-
gions indicates each type of elastic materials. Magenta vertices correspond
to the locations of 5-fold disclinations and there are 12 disclinations in total
which are located on vertices of an inscribed icosahedron.

[99, 100], all locomotion mechanisms must generate non-reciprocal movements to have

net-displacements in viscous fluids. By introducing heterogeneous elasticity as shown in

Fig. 2.8 combining with reversible buckling transition induced by external magnetic fields,

it’s promising to generate non-reciprocal deformations similar to the one demonstrated

in [101]. In terms of theoretical and numerical study, it’s also interesting to integrate the

magnetoelastic membrane model developed here with appropriate hydrodynamic models,

such as LBM, DPD, MPCD and SD, etc., to systematically investigate the performance

of possible locomotion mechanisms [102–106] at the microscopic scale.
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CHAPTER 3

Quincke Oscillators∗

3.1. Introduction

The Quincke rotation [108] refers to the spontaneous rotation of dielectric parti-

cles immersed in a weakly conducting liquid under the application of a direct current

(DC) electric field [109]. Recently, this phenomenon is attracting increasing interests

because of its great potential in the design of the synthetic active system [110–115]. The

boundary-assisted [114] or the geometry-assisted [116] locomotion, which mimic its bi-

ological counterparts, has been theoretically designed and experimentally realized. The

mechanism of Quincke rotation was successfully explained with the Taylor-Melcher leaky

dielectric model [117–119], which was developed for studying electrohydrodynamics in

1970s. In the most general form, there are three sets of equations used for describing

electrohydrodynamical problems:

(1) the Navier-Stokes (N-S) equations which describe the motion of fluid;

(2) the Maxwell’s equations which describe the electromagnetic phenomena;

(3) the Nernst-Planck (N-P) equation which describes the transport phenomena;

Those three sets of equations coupled with each other and make the problem complicated.

However, additional simplifications can be made for the case of the Quincke rotation. As

∗This chapter is primarily based on the published work [107] of Zhengyan Zhang, Hang Yuan, Yong
Dou, Monica Olvera de la Cruz† and Kyle J. M. Bishop†, Quincke Oscillations of Colloids at Planar

Electrodes, Phys. Rev. Lett., Vol. 126, p. 258001, 2021, with modified notations and extended details
to comply with the structure of this work.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.258001
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.258001
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the particles are generally in the micron scale, the low Reynolds number (Re) allows us to

use the Stokes equation instead; In the absence of magnetic fields, the Poisson’s equation

is su�cient to describe electrostatic phenomena; The weakly conducting liquid (or the

leaky dielectric) allows us to ignore the electric double layer (EDL) structure, which is

usually important in the case of strong electrolyte. Therefore, all particle-liquid interfaces

in the Quincke system can be regarded as sharp boundaries. And net charges only exist

at the interfaces such that the electroneutrality holds everywhere in the bulk solution.

It also means that the electromechanical coupling [120] occurs only at the boundaries

between particles and its surrounding liquid, where charges, transported to the interfaces

by conduction, accumulate at the interface. Those accumulated free charges modify the

local electric field and create the electric stress, which must be balanced by the viscous

stress developed by flows of liquid.

With above considerations, the equations used for explaining the Quincke rotation

related phenomena can be simplified as:

(1) the Stokes equations which describe the motion of viscous flows;

(2) the Poisson’s equations which describe the electrostatics;

(3) the surface charge conservation equation which describe the electric conduction;

Usually, the resistance matrix formulation [121] is used instead of solving Stokes equa-

tions explicitly. The Poisson’s equation and the surface charge conservation equation

have been solved with the multipole expansion [122,123]. With negligible particle iner-

tia, it successfully described the important features of Quincke rotation such as the critical

threshold of electric field via linear stability analysis and get the correct scaling of the

angular velocity with respect to the electric field strength [Sec. 3.5]. When the particle
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inertia is significant, those equations can be mapped into the Lorentz equations [124] and

the chaotic dynamics is predicted [125] in the strong field limit, which is also observed

in the experiment [115, 126]. However, the question about the behavior of inertialess

particles in the strong field limit does not have a clear answer yet. Interestingly, our

experiments [107] with inertialess particles (Re⇠ 10�3) surprisingly discovered a robust

periodic oscillation in the strong field limit [Sec. 3.2]. Our primary motivation of this

work is to explain this unexpected oscillatory motion.

This chapter is centered around for explaining two observed motion modes of a single

Quincke particle, rolling motion and oscillating motion. Sec. 3.2 describes the experimen-

tal setup and observed phenomena; Then, the existing theory for explaining the Quincke

rotation are explained in details, which includes the general Taylor-Melcher (T-M) leaky

dielectric model [Sec. 3.3], the theoretical description of a single Quincke particle [Sec.

3.4] and the multipole model of Quincke rotation [Sec. 3.5]; Based on those theoretical

development, the mechanism of rolling motion is explained [Sec. 3.6]. After that, this

chapter interludes with emphasizing the important roles of the planar electrode [Sec. 3.7],

whose e↵ects are investigated via both numeric [Sec. 3.8] and theoretical [Sec. 3.9] ap-

proaches. After realizing the existence of a boundary layer near the electrode surface,

the mechanism of oscillatory motions is elucidated [Sec. 3.10] and the whole chapter

concludes with a brief discussion and raises possible future works [Sec. 3.11].



ar
ch
iv
e

74

3.2. Experimental setup and observations

In the experiment, polystyrene spheres are dispersed at low volume fraction in hex-

adecane solutions of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) surfactant [Fig. 3.1]

to get isolated particle behaviors. The suspension is confined between two parallel elec-

trodes, where the particles sediment under gravity to the lower electrode [Fig. 3.2(a)].

All relevant experiment parameters are documented in table 3.1. On the application of

Figure 3.1. Chemical diagrams of NaAOT and hexadecane. Comparing
with water, this nonpolar solution has smaller electric conductivity and
higher dielectric breakdown voltage.

an external electric field, the particles move on the electrode surface and exhibit three

distinct types of particle motion, stationary, rolling and oscillating [Fig. 3.2(b)], depend-

ing on the strength of the applied electric field.

For external fields strength weaker than a critical value, particles remain motionless

[Fig. 3.2(b), left]. After exceeding this critical value, particles roll along the electrode

surface in random directions perpendicular to the applied field with a constant speed

[Fig. 3.2(b), middle]. Further increasing the field strength, a second transition, where

particles cease to roll and instead oscillate back and forth [Fig. 3.2(c), right], is observed.

We characterize those three di↵erent particle motions with time averaged particle speed.
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a

E0

AOT/hexadecane (f)

ITO coated glass

polystyrene spheres (p)

imaging

ω2a

b stationary rolling oscillating

increasing field strength E0

0.7 V/μm 5.7 V/μm3.7 V/μm

ℓ

+−

c

0

Figure 3.2. (a) Schematic illustration of the experimental setup. (b) Time-
lapse microscopy images showing the three observed particle behaviors: sta-
tionary, rolling, and oscillating. Here, the particle radius is a = 5 µm, the
AOT concentration is [AOT] = 150 mM, and the electrode separation is
H = 150 µm. Scale bars are 40 µm. (c) Time-averaged particle speed vs.
external field strength Ee. For each 20 ms trajectory, we compute the mean
and standard deviation of the particle speed. Markers denote the median of
these mean speeds for ca. 1000 trajectories; error bars denote the median of
the corresponding standard deviations. The plotted data are colored based
on probability assignments of the Bayesian classifier. The solid curve is a
fit of the form U = (a/⌧mw)[(Ee/Eo)2 � 1]1/2 with  = 0.40 and Eo = 2.3
V/µm; the Maxwell-Wagner relaxation time is ⌧mw = 0.70 ms from inde-
pendent conductivity measurements. Note that the fitted value of the field
strength Eo di↵ers from that predicted by equation (3.64) for an unbounded
sphere, Ec = 0.91 V/µm.
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During the transition from rolling motion to oscillating motion, temporal variations of

particle speed increase from zero to a finite value [Fig. 3.2(c), error bars].

Parameters Symbols Values

radius of polystyrene microspheres a 0.5 - 25.0 µm

height of chamber H 150 - 300 µm

applied electric potential V 0.1� 1 kV
particle density(polystyrene) ⇢p 1.05 g/cm3

liquid density(0.15M AOT/hexadecane) ⇢l 0.77 g/cm3

relative permittivity of the particle ✏p 3
relative permittivity of the liquid ✏l 2
electric conductivity of the particle �p 0 S/cm

electric conductivity of the liquid(0.15M AOT [127]) �l 0.195⇥ 10�9 S/cm
dynamic viscosity of the solution ⌘ 3 mPa · s

Table 3.1. Table of experimental parameters of Quincke oscillation system

3.3. Taylor-Melcher leaky dielectric model

This section will revisit the foundation of the Taylor-Melcher leaky dielectric model

[117] proposed by G. I. Taylor and J. R. Melcher in the 1960s. The leaky dielectric model

is extensively used in the electrohydrodynamics, which deals with fluid motion induced by

electric fields. The governing equations describing electrohydrodynamics arise from the

equations for describing the conservation of mass and momentum [128], coupled with the

Maxwell’s equations [129]. The scaling analysis will be used to derive the fundamental

equations of the leaky dielectric model from the Nernst-Planck equation, the Navier-

Stokes equation and the Maxwell’s equation. It will focus on highlighting all assumptions

of the leaky dielectric model and show how to arrive at the simplified equations used for

explaining the Quincke rotation with the experimental conditions.
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3.3.1. Maxwell’s equation

According to the Maxwell’s equation, the electric and magnetic phenomena are decoupled

from each other in the time-independent conditions (or static conditions). In the absence

of the magnetic field, the magnetic contributions can be completely ignored. The char-

acteristic time scale of electric phenomena is ⌧e = ✏r✏0/�, where ✏r is the relative electric

permittivity of the medium, ✏0 is the absolute electric permittivity of vacuum and � is the

electric conductivity of the medium. The characteristic time scale of magnetic phenom-

ena is ⌧m = µrµ0�L
2

c
, where µr is the relative magnetic permeability of the medium, µ0 is

the absolute magnetic permeability of vacuum and Lc is the characteristic length scale.

Because ⌧e � ⌧m holds for any usual conductivity of liquids considered in this work, the

electrostatic approximation holds and the Poisson’s equation is su�cient to describe the

electric phenomena involved in this work:

(3.1) r · (✏r✏0r') = �⇢f

where ' is the electric potential, ⇢f is the free charge density and the electric field E =

�r'. The corresponding boundary conditions at the particle-liquid interface is:

(3.2) n̂12 · [D2 �D1]r=a
= qs

where D is the electric displacement field and D1(2) = Dp(l) = ✏p(l)✏0Ep(l) is the electric

displacement field of particle (liquid); n̂12 is the outer normal of the interface, pointing

from the particle to the liquid; qs is the free surface charge density. Since the magnetic
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contributions are ignored, the Maxwell stress tensor [129] only contains electric compo-

nents:

(3.3) �e = ✏E⌦ E� 1

2
✏(E · E)I

where ✏ = ✏r✏0 is the absolute permittivity of the medium, ⌦ denotes the dyadic product

and I is the identity tensor. Then, the electric force at the particle-liquid interface fe is:

(3.4) fe = n̂12 ·
⇥
�2
e
� �1

e

⇤
r=a

where �1
e
and �2

e
are the respective Maxwell stress tensor of particle �p

e
and liquid �l

e
.

3.3.2. Navier-Stokes equation

By the conservation of momentum, the general form of the Navier-Stokes equation [128]

is:

(3.5) ⇢
Du

Dt
= r · � + ⇢f

where u is the flow velocity of fluid, ⇢ is the density of fluid, � is the Cauchy stress tensor,

f is the body force such as gravity and D

Dt
is the material derivative, which is defined as:

(3.6)
D

Dt
=

@

@t
+ u ·r

In the electrohydrodynamics, the Cauchy stress tensor should include both hydrodynamic

and electric contributions, i.e.

� = �h + �e
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where �e is the Maxwell stress tensor as shown in equation 3.3 and �h is the hydrodynamic

stress tensor. Since we only consider simple incompressible Newtonian fluid in this work,

the corresponding constitutive relation of the fluid is:

(3.7) �h = �pI + µ
�
ru+ruT

�

where p is the pressure and µ is the dynamic viscosity of fluid.

Substituting both Eqn. 3.3 and Eqn. 3.7 back into Eqn. 3.5, it gives that

(3.8) ⇢


@u

@t
+ (u ·r)u

�
= �rp� 1

2
E · Er✏+ µr2u+ ⇢fE

In the right hand side, the first term is the force from the pressure gradient, the second

term is the contribution from the dielectric permittivity gradient, the third term is resulted

from viscous stress and the fourth term is the possible electric body force caused by the

net charges under electric fields. The corresponding boundary conditions at the particle-

liquid interface depend on the system and the most commonly used boundary condition

is the no-slip boundary condition at the interface:

(3.9) [u�Up]r=a
= 0

where u is the flow velocity of liquid at the interface and Up is the velocity at the particle

surface.

Besides, the mass conservation gives the continuity equation:

(3.10)
@⇢

@t
+r · (⇢u) = 0
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and the incompressible condition simplifies the above equation as:

(3.11) r · u = 0

3.3.3. Nernst-Planck equation

To complete the description, we still need the distribution of free charges. In the liquid,

the free charges are carried by the ions and the free charge density ⇢f is related to the

concentration of each ion species:

(3.12) ⇢f =
X

i

ezini

where e is the charge of a proton, zi is the valence of i-th species and ni is the number

density of i-th species(in the unit of 1/m3). By the conservation of charges, the Nernst-

Planck equation is:

(3.13)
@ni

@t
+r · Ji = ri

where ri is source/sink of i-th species due to related chemical reactions and Ji is the total

flux of i-th species, which includes the di↵usion flux Jd

i
= �Dirni, the electric migration

flux Je

i
= µieziniE and the convection flux Jc

i
= niu, i.e.

(3.14) Ji = Jd

i
+ Je

i
+ Jc

i
= �Dirni + µieziniE+ niu

where Di is the di↵usion constant of i-th species, µi is the mobility of i-th species, E is

the electric field and u is the flow velocity. Here, the Ohmic conductivity is assumed as

Je

i
= �iE = µieziniE and �i is the electric conductivity of i-th species. The mobility µi
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of i-th species is related to its di↵usion constant Di via the Einstein relation:

(3.15) µi =
Di

kBT

where kB is the Boltzmann constant and T is the temperature. The inverse of mobility

is the friction coe�cient ⇠, which can be estimated from the Stokes drag, i.e. ⇠i = µ
�1

i
=

6⇡µah
i
, where µ is the dynamic viscosity of liquid and a

h
i is the hydrodynamic radius of

i-th species. Plugging Eqn. 3.14 back into Eqn. 3.13, it gives that

(3.16)
@ni

@t
+r · [�µikBTrni + µieziniE+ niu] = ri

This is the general of form of Nernst-Planck equation used in electrohydrodynamics.

Besides, we are particularly interested in the charge conservation at the particle-liquid

interface. Then, we can constrain the above equation at the interface and integrate it

across a patch of the interface to get the surface charge conservation equation. Assuming

the interface is rigid (deformable interfaces will have additional contribution from the

moving boundary) and there is no surface reactions, it gives that

(3.17)
@n

s

i

@t
+rs · [�µ

s

i
kBTrsn

s

i
+ µ

s

i
ezin

s

i
E+ n

s

i
u] + n̂12 ·

⇥
J2

i
� J1

i

⇤
= 0

where n
s

i
is the surface number density of i-th species, µs

i
is the surface mobility of i-th

species, rs· is the surface divergence operator and rs is surface gradient operator; n̂12

is the outer normal of the interface and J1

i
(J2

i
) denotes the total flux of i-th species [Eqn.

3.14] in the medium 1(2). Basically, the divergence term describes the change of species

concentration from the surface flux (lateral transport processes) and the normal jump
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term describes the change of species concentration from the bulk flux (normal transport

processes).

3.3.4. Leaky dielectric systems

To summarize, the general formulation of electrohydrodynamics problem consists of the

following coupled equations [117,118]:

(3.18)

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

r · (✏r✏0E) =
X

i

ezini

⇢


@u

@t
+ (u ·r)u

�
= �rp� 1

2
E · Er✏+ µr2u+ ⇢fE

r · u = 0

@ni

@t
= �r · [�µikBTrni + µieziniE+ niu] + ri, i = 1 · · ·N

If there are chemical reactions involved in the system(ri 6= 0), additional equations de-

scribing the relevant chemical reactions also need to be included to close the system of

equations.

So far, we have not make any assumptions specific to the leaky dielectric system. For

a perfect dielectric medium, there is no free ions and we do not need to concern about

the transport processes. It behaves like a perfect insulator and the polarization charges

dominate the electrostatic interactions. For a perfect conducting medium, like the strong

electrolyte, the solute molecules completely or almost completely break apart into ions in

the solution. A large number of free ions make the strong electrolyte a good conductor

and generally the transport processes are more important in those systems. Comparing
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with those two extreme cases, the leaky dielectric system lies closer to a perfect dielectric

system but it’s weakly conducting. That’s how it gets the name of leaky dielectric. It

generally consists of weak electrolyte in a nonpolar solution.

Here, we focus on the 1:1 binary electrolyte and there are one neutral species, one

positively charged species and one negatively charged species (N = 3). More specifi-

cally, we use dioctyl sulfosuccinate sodium salt (NaAOT) dissolve in the nonpolar solvent

hexadecane [Sec. 3.2, Fig. 3.1]. The association-disassociation reaction of NaAOT in

hexadecane is:

(3.19) NaAOT
(n1,z1=0)

k+��*)��
k�

Na+
(n2,z2=+1)

+ AOT�
(n3,z3=�1)

where k+ and k� are the forward and backward reaction rate constants, respectively.

Reaction rate constants depend on the chemicals and the solvent used in the system. The

corresponding reaction rate equations are:

(3.20) � r1 = r2 = r3 = +k+n1 � k�n2n3

where ri, ni, and zi denote the chemical production rate, the concentration and the va-

lence of each species (i = 1, 2, 3). It’s worth comparing with the case of strong electrolyte.

In the strong electrolyte, solute molecules are completely or almost completely ionized

in the solvent and the chemical reaction is almost unidirectional. Generally, the strong

electrolyte reaches its equilibrium very quickly. And all chemical reaction rates are zero

at the equilibrium.
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For the weak electrolyte, the equilibrium constant K= [Na
+
][AOT

�
]

[NaAOT]
= n2n3/n1 = k+/k�

is useful for characterizing the degree of disassociation. However, for the case of NaAOT

dissolve in hexadecane, it’s more complicated as the concentration used in the experiment

is much higher than its critical micelle concentration (CMC) (10�6M [130]). Therefore,

charge carriers include both the ionized monomers and charged reverse-micelles [127].

Assume the bulk concentration of NaAOT is n0. Then, it’s convenient to use
p
n0K as

the characteristic concentration of all charged species, provided
p
n0K ⌧ n0. We are

most interested in the distribution of charged species. Therefore, we can add Eqn. 3.16

for i = 2 and i = 3 cases together:

(3.21)
@⇢f

@t
= �r ·

⇥
�kBT (µ2ez2rn2 + µ3ez3rn3) +

�
µ2e

2
z
2

2
n2 + µ3e

2
z
2

3
n3

�
E+ ⇢fu

⇤

where z2 = �z3 = z has been applied to eliminate the reaction terms. In order to see

the relative importance of each flux components, we recast the above equation into the

dimensionless form:

(3.22)
⌧D

⌧c

@⇢f

@t
= r2 (µ2rn2 � µ3rn3)� ⇤r · [(µ2n2 + µ3n3)E]� Per · (⇢fu)

where all quantities are scaled with characteristic scales defined in the table 3.2, ⌧D =

L
2
c

kBTµc
⇠ 0.3 s, ⇤ = ezEcLc

kBT
⇠ 400 and Pe= UcLc

kBTµc
⇠ 60. The Quincke rotation has very

fast dynamics (⌧c ⇠ 1ms), which gives that ⌧D/⌧c ⇠ 300. Therefore, all dimensionless

quantities are much greater than O(1), which means that the di↵usion process is negligible

in our system, i.e.

(3.23)
⌧D

⌧c

@⇢f

@t
= �⇤r · [(µ2n2 + µ3n3)E]� Per · (⇢fu)
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To further simplify the problem, we need to utilize the electroneutrality condition

of the system. According to the Debye–Hückel theory, the Debye length �D provides a

characteristic length scale of the di↵usion layer in the strong electrolyte. However, since

we are working with the weak electrolyte (NaAOT/hexadecane), we cannot estimate the

Debye length with the concentration of NaAOT directly. Experiment measurement has

been conducted to estimate the Debye length in NaAOT/hexadecane solution [130]. For

0.15 M NaAOT, the Debye length is about 100 nm, which is about 1% of a particle

diameter. Therefore, the di↵usion layer is very thin comparing with the particle size

and the system is mostly electroneutral away from interfaces. With the electroneutrality

condition in the bulk region, the equation 3.23 reduces as the classic Ohm’s law in the

steady state:

(3.24) r · [(µ2n2 + µ3n3)E] = 0

Note that the total electric current Je= �lE = (µ2ez2n2 + µ3ez3n3)E. Besides, the

electroneutrality also allows to simplify the Poisson’s equation [Eqn. 3.1] for electrostatics

as the Laplace’s equation:

(3.25) r · (✏r✏0E) = 0

And the equation 3.8 for hydrodyanmics as:

(3.26) ⇢


@u

@t
+ (u ·r)u

�
= �rp+ µr2u
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where we assumed the change of dielectric permittivity happens only at the interfaces.

To sum up, the simplified governing equations for the leaky dielectric systems are:

(3.27)

8
>>>>>>>>>>><

>>>>>>>>>>>:

r · (✏r✏0E) = 0

⇢


@u

@t
+ (u ·r)u

�
= �rp+ µr2u

r · u = 0

r · Je = 0

The considerations specific to the leaky dielectric systems greatly simplify the original

governing equations 3.18, which make these three sets of equations completely decouple

from each other everywhere except at the particle-fluid interfaces.

To complete the simplifications, we also need to deal with the couplings at the inter-

faces. Following the similar scale analysis used for simplifying the N-P equation in the

bulk, the general interfacial charge conservation equation [Eqn. 3.17] can be simplified by

noticing that [see Table 3.2]:

(1) the di↵usion process is negligible comparing with other transport processes;

(2) the convection flux term dominates in the lateral transport processes;

(3) the electric migration flux dominates in the normal transport processes;

It gives that

(3.28)
@qs

@t
+rs · [qsu] + n̂12 ·

⇥
J2

e
� J1

e

⇤
= 0
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Therefore, the corresponding boundary conditions for the leaky dielectric systems are:

(3.29)

8
>>>>>><

>>>>>>:

n̂12 · [D2 �D1]r=a
= qs

[u�Up]r=a
= 0

@qs

@t
+rs · [qsu] + n̂12 ·

⇥
J2

e
� J1

e

⇤
= 0, r = a

Finally, Eqn. 3.27 and Eqn. 3.29 together form the foundation of theoretical frame-

works describing the leaky dielectric systems. The coupling between electrostatics and

hydrodynamics is only introduced via the boundary conditions. The great simplifications

are achieved by: 1) ignoring the electric double layer structure, which enables treating

all boundaries as sharp interfaces and also the electroneutrality condition in the bulk; 2)

identifying the dominant transport process and ignoring negligible ones.

Quantities Symbols Characteristic values

time ⌧c 1 ms
length Lc 5 µm
velocity Uc 1 mm/s

electric field strength ⇠ Ec 2 V/µ m
mobility µc = (6⇡⌘Lc)�1 2⇥ 1010s/kg

di↵usion constant kBTµc 10�10m2
/s

time scale of di↵usion ⌧D = L
2

c
/kBTµc 0.3 s

concentration of NaAOT n0 0.1 M
Debye length �D 100 nm

Reynolds number Re = ⇢lUcLc/µ 10�3

Péclet number Pe = UcLc
kBTµc

100

Table 3.2. Table of characteristic values of relevant quantities and dimen-
sionless parameters of Quincke oscillation system
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3.4. Theoretical model of a single Quincke roller

The theoretical description introduced in section 3.3 is general for any leaky dielectric

materials and more specific results can be obtained by applying them to the systems of

interests. The simplest scenario is to consider a single isolated Quincke particle immersed

in a weakly conducting liquid as shown in figure 3.3. Without loss of generality, consider

a dielectric particle of radius a with relative dielectric permittivity ✏p and conductivity �p

immersed in a weakly conducting liquid with relative dielectric permittivity ✏l and con-

ductivity �l. An uniform external electric field E0 = E0ẑ is applied along the z-axis and

the dynamic viscosity of the fluid is µ. The particle may exhibit a possible mechanical

rotation of angular velocity ⌦. Please refer to table 3.1 for a more concrete sense of these

parameters in experimental conditions.

3.4.1. Governing equations of a single Quincke particle

First, we need to apply the general governing equations [Eqn. 3.27] for the case of a single

Quincke particle. For the convenience, the external electric fields are split out and the

total electric potential ' can be written as:

(3.30) '(r) =

8
>><

>>:

'b(r) + '
+

d
(r) |r| > a

'b(r) + '
�
d
(r) |r| < a

where r is the position vector and 'b(r) = 'b(0)� r ·E0 is the background electric poten-

tial contributed by the external electric fields, which is assumed to be uniform and does

not have any gradient components for the moment; '+

d
and '�

d
are respective disturbance
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Figure 3.3. Schematic of a single isolated Quincke particle. A dielectric
particle of radius a with relative dielectric permittivity ✏p and conductivity
�p immersed in a weakly conducting liquid with relative dielectric permit-
tivity ✏l and conductivity �l. An uniform external electric field E0 = E0ẑ
is applied along the z-axis and the dynamic viscosity of the fluid is µ. The
particle may exhibit a possible mechanical rotation of angular velocity ⌦.

potentials inside and outside the particle.

Following the assumptions of the leaky-dielectric model, both disturbance potentials

should satisfy the Laplace’s equation [Eqn. 3.25], i.e.

(3.31) r2
'
+

d
(r) = r2

'
�
d
(r) = 0

Besides, the hydrodynamic equations [Eqn. 3.26] needs to be solved in order to determine

the kinetic motion of the particle. Since the typical size of the Quincke roller particle

is in the micrometer scale, the low Reynolds number (Re = ⇢uL

µ
⇠ 10�3) enables the
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description of the hydrodynamic behaviors with the Stokes’ equation:

(3.32)

8
>><

>>:

µr2u = rp+ f

r · u = 0

In principle, the Stokes’ equation needs to be solved to get the viscous stress exerted

upon the Quincke particle. Together with electric forces and torques, the kinetic motions

of Quincke particle can be calculated through force and torque balances. However, the

linearity of the Stokes’ equation allows expressing the relationship between kinetic motions

and mechanical forces in a mobility matrix form [121]:

(3.33)

0

B@
U

⌦

1

CA =

0

B@
MUF MUT

M⌦F M⌦T

1

CA

0

B@
F

T

1

CA

where U and ⌦ are the translational and angular velocity of the particle, respectively;

F and T are the total forces and torques exerted on the particle; MUF , MUT , M⌦F and

M⌦T are corresponding mobility tensors. If those mobility tensors can be determined for

the systems of interests, the hydrodynamic equations do not need to be solved explicitly.

For an unbound medium [131] here, mobility tensors take particularly simple forms and

MUF = (6⇡⌘a)�1 I,M⌦T = (8⇡⌘a3)�1
I and MUT = M⌦F = 0, where µ is the dynamic

viscosity of the liquid and I is the identity tensor.

Finally, the electric currents Je in the bulk are just simple constant Ohmic currents [Eqn.

3.24]. Therefore, the only governing equations need to be solved explicitly is the electro-

static equation [Eqn. 3.31].
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3.4.2. Boundary conditions of a single Quincke particle

Next, the general boundary conditions [Eqn. 3.29] also need to be satisfied at the fluid-

particle interface. First, the electric potentials should be continuous at the interface [129]:

(3.34) '
+

d
(r) = '

�
d
(r) if |r| = a

Second, the free surface charge should be equal to the normal jump of electric displacement

fields by the Gauss’s law [129]:

(3.35) n̂12 ·
⇥
�✏2r'

�
d
(r) + ✏1r'

+

d
(r)

⇤
= qs if |r| = a

Third, the surface free charges on the interface should be conserved as a result of Ohmic

currents from the bulk and charge convection by the flow motion [132], i.e.

(3.36)
@qs

@t
+rs · [qsus] + n̂12 ·

⇥
J2

e
� J1

e

⇤
= 0 if |r| = a

where Je
i = �iE = ��ir'(r), i = 1, 2 are the respective electric current in the fluid

(i = 1) and the particle (i = 2); us is the surface convection velocity, which is assumed to

be the same as the particle surface velocity us = ⌦⇥ an̂, where ⌦ is the angular velocity

of the particle.

Lastly, the disturbance electric potential should decay to zero at the infinity in an uncon-

fined space, i.e.

(3.37) '
+

d
(r) ! 0 as |r| ! 1
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If the system is confined by additional boundaries, the electric potential may not vanish at

the boundaries far away. For example, when the particle is near an electrode surface, the

above boundary condition should be replaced by a constant potential boundary condition

at the electrode surface,

(3.38) '
+

d
(r) ! '0, r 2 electrode

where '0 is the constant potential imposed at the electrode surface and this boundary

condition will be discussed more in Sec. 3.7.1.

3.5. Multipole expansion in unconfined space

In an unbounded medium, we need to solve Eqn. 3.31 together with boundary condi-

tions Eqn. 3.34, 3.35, 3.36 and 3.37. By restricting the point of interests to be far away

from the Quincke particle (i.e. |r| � a), the detailed distribution of the surface charge

density qs can be replaced by its moments (dipole moments, quadruple moments, etc.),

which reduces the complexities of solving partial di↵erential equations (PDE) into a set

of ordinary di↵erential equations (ODE). This approximation can be done systematically

via the multipole expansion and most essential properties of the Quincke rotation can be

derived via this approach [116,123,133].
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3.5.1. Spherical harmonic solutions

To include more general situations, let’s assume that the external electric fields in the

absence of Quincke particle can be written as:

(3.39) Eb(r) = E0 + r · rEb|r=0 + · · ·

which considers possible gradients of the external electric fields around the particle. Thus,

the total electric field inside and outside the particle can be written as:

(3.40) E+(r) = Eb + E+

d
, |r| > a

(3.41) E�(r) = Eb + E�
d
, |r| < a

In the unconfined space, the disturbance potentials '+

d
(r) and '

�
d
(r) can be written in

terms of spherical harmonics [134]:

(3.42) '
+

d
(r) =

r ·P
r3

+
1

2

rr : Q

r5
+ · · · , |r| > a

(3.43) '
�
d
(r) =

r ·P
a3

+
1

2

rr : Q

a5
+ · · · , |r| < a

where P and Q are electric dipole and quadrupole moments respectively. Note that the

contribution of charge monopole is not included as the Quincke particle is assumed to be

charge neutral (because the Debye length �D is small comparing with the particle radius



ar
ch
iv
e

94

a). Then, the corresponding disturbance electric fields are:

(3.44) E+

d
(r) = �r'

+

d
(r) =

✓
�P

r3
+ 3

r ·P
r5

r

◆
+

✓
�Q · r

r5
+

5

2

rr : Q

r7
r

◆
+ · · · , |r| > a

(3.45) E�
d
(r) = �r'

�
d
(r) = �P

a3
� Q · r

a5
+ · · · , |r| < a

The above spherical harmonic expansion automatically satisfies the boundary conditions

3.34 and 3.37.

3.5.2. Surface charge conservation

The free surface charge qs can be expressed in terms of electric moments by substituting

3.42 and 3.43 into 3.35, which gives that:

(3.46)

qs = n̂12 · [✏2E2 � ✏1E1] = � (✏2 � ✏1) [E0 + ar̂ ·rEb(0)] · r̂

+ (✏2 + 2✏1)
P · r̂
a3

+

✓
✏2 +

3

2
✏1

◆
r̂r̂ : Q

a4
+ · · ·

where r̂= r/ |r| and n̂12= �r̂. And the corresponding Euclidean gradient of surface charge

is:

(3.47)

rqs = � (✏2 � ✏1)
E0

a
� (✏2 � ✏1)

�
rEb +rET

b

�
· r̂

+ (✏2 + 2✏1)
P

a4
+

✓
✏2 +

3

2
✏1

◆ �
Q+QT

�
· r̂

a5
+ · · ·
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For the case of spherical particles, the surface divergence [79] of surface charge currents

can be calculated as:

(3.48)

rs · [qsus] = rqs · us

=

⇢
� (✏2 � ✏1)


E0

a
+
�
rEb +rET

b

�
· r̂
�
+ (✏2 + 2✏1)

P

a4
+ (2✏2 + 3✏1)

Q · r̂
a5

�
· (⌦⇥ ar̂)

= r̂ ·
⇢⇢

� (✏2 � ✏1)
⇥
E0 +

�
rEb +rET

b

�
· ar̂

⇤
+ (✏2 + 2✏1)

P

a3
+ (2✏2 + 3✏1)

Q · r̂
a4

�
⇥⌦

�

Lastly, note the electric currents in both medium are assumed to be Ohmic, i.e.

(3.49) J1

e
= �1E = �1

�
Eb + E+

d

�
,J2

e
= �2E = �2

�
Eb + E�

d

�

Then, the surface charge accumulation due to the bulk electric currents is:

(3.50)

n̂12 ·
⇥
J2

e
� J1

e

⇤
= � (�2 � �1) [E0 +rEb · ar̂] · r̂

+ (�2 + 2�1)
P · r̂
a3

+

✓
�2 +

3

2
�1

◆
r̂r̂ : Q

a4
+ · · ·

3.5.3. Time evolution equations of electric moments

Substituting 3.46, 3.48 and 3.50 into 3.36, it gives the time evolution equation for each

electric moments by collecting terms of each spherical harmonics:

(3.51)
dP

dt
= ⌦⇥

⇥
P� ✏

P

21
a
3E0

⇤
� 1

⌧P
mw

⇥
P� �

P

21
a
3E0

⇤

(3.52)
dQ

dt
= ⌦⇥

h⇣
Q� ✏

Q

21
a
5rEb · r̂

⌘
+
⇣
QT � ✏

Q

21
a
5rET

b
· r̂
⌘i

� 1

⌧
Q

mw

⇣
Q� �

Q

21
a
5rEb

⌘
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where ⌧P
mw

and ⌧Q
mw

are the Maxwell-Wagner (M-W) relaxation time of dipole and quadrupole

moments respectively, which are given as:

(3.53) ⌧
P

mw
=

✏2 + 2✏1
�2 + 2�1

, ⌧
Q

mw
=

2✏2 + 3✏1
2�2 + 3�1

And two dimensionless parameters ✏21 and �21 , which characterize the mismatch of electric

permittivity and conductivity between two mediums, are defined as:

(3.54) ✏
P

21
=

✏2 � ✏1

✏2 + 2✏1
, �

P

21
=

�2 � �1

�2 + 2�1

(3.55) ✏
Q

21
=

✏2 � ✏1

✏2 +
3

2
✏1

, �
Q

21
=

�2 � �1

�2 +
3

2
�1

Please note that the derived results have slightly di↵erent forms comparing with the

results in [123].

3.5.4. Mechanical balances

Since there exists possible free surface charges qs at the particle-liquid interface, the

particle may experience net electric forces Fe=
H
fedS and electric torques Te=

H
r⇥fedS,

where the integral is taken over the particle surface, fe= n̂ ·
⇥
�e
l
� �e

p

⇤
r=a

is the interfacial

electric force and �e= ✏E⌦ E� 1

2
✏(E · E)I is the electric stress tensor .

Similarly, electric forces and torques can be expressed in terms of electric moments by the

multipole expansion [120,135], i.e.

(3.56) Fe = (P ·r)E0 + · · ·
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and

(3.57) Te = P⇥ E0 + (Q ·r)⇥ E0 + · · ·

With the electric forces and torques, the kinetic motion of the Quincke particle is readily

calculated by simply multiplying them with the mobility tensors [Eqn. 3.33]. For example,

the rotational motion of the Quincke particle in the bulk solution can be obtained by

balancing electric torques and viscous torques:

(3.58) ⌦ =M⌦TTe =
�
8⇡⌘a3

��1
Te

3.5.5. Steady-state solutions

Now we are ready to derive several important properties of Quincke rotation based on

previous results. For simplicity, the external electric field is assumed to be uniform.

Thus, the electric torque is dominantly contributed by the electric dipole moment, i.e.

Te= Pe↵ ⇥ E0. Note that the e↵ective dipole moment should be used [120], which is

Pe↵ = ✏1P here and ✏1 is the dielectric permittivity of the fluid. And the electric dipole

moment in the steady state [Eqn. 3.51, dP
dt

= 0] is given by:

(3.59) ⌦⇥P� 1

⌧P
mw

P = ✏
P

21
a
3⌦⇥ E0 �

1

⌧P
mw

�
P

21
a
3E0

Taking inner product and cross product of the above equation with ⌦ yields:

(⌦ ·P)⌦� (⌦ ·⌦)P� 1

⌧P
mw

⌦⇥P = ✏
P

21
a
3(⌦ ·E0)⌦� ✏

P

21
a
3(⌦ ·⌦)E0 �

1

⌧P
mw

�
P

21
a
3⌦⇥E0
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and

� 1

⌧P
mw

⌦ ·P = � 1

⌧P
mw

�
P

21
a
3⌦ · E0

It gives the steady state electric dipole moment† as:

(3.60)

P =
(�P

21
� ✏

P

21
)

1 + (⌦⌧P
mw

)2
a
3
⇥�
⌦⌧P

mw

�
⇥ E0 +

�
⌦⌧P

mw
· E0

�
(⌦⌧P

mw
)
⇤
+
✏
P

21

�
⌦⌧

P

mw

�2
+ �

P

21

1 + (⌦⌧P
mw

)2
a
3E0

Plugging it back into the torque balance [Eqn. 3.58] gives that:

(3.61) 8⇡⌘a3⌦ = 4⇡✏0✏1
(�P

21
� ✏

P

21
)

1 + (⌦⌧P
mw

)2
a
3
⇥�
⌦⌧P

mw

�
⇥ E0 +

�
⌦⌧P

mw
· E0

�
(⌦⌧P

mw
)
⇤
⇥ E0

Next, taking the inner product of the above equation with the external electric field E0

immediately yields that:

(3.62) ⌦ · E0 = 0

This is the first important result derived from the steady state solution, which states that

the direction of the angular velocity of the Quincke particle ⌦ can be any be any random

direction perpendicular to the applied external electric field E0. As for the magnitude of

the angular velocity, it can be obtained by taking inner product with the angular velocity

⌦:

(3.63) ⌦
2


1 +

�
⌦⌧

P

mw

�2
+
✏0✏1(�P

21
� ✏

P

21
)⌧P

mw

2⌘
E

2

0

�
= 0

†Eqn. 3.51 can be solved via the Laplace transformation to derive the complete time evolution of the
electric dipole moment P(t).
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The first solution of the above equation is the stationary solution (⌦ = 0), which corre-

sponds to the absence of particle motion [3.2(b), left]. And the second solution corresponds

to the steady rotation of the particle [3.2(b), middle]:

(3.64) ⌦ = ± 1

⌧
P

MW

s✓
E0

Ec

◆2

� 1

The above expression indicates another important feature of Quincke rotation, i.e. the

steady rotation only occurs when the external field strength E0 exceeds a critical field

strength Ec, which is given by

(3.65) Ec =

s
2⌘

✏0✏1⌧
P
mw

(✏P
21
� �

P

21
)

where the Maxwell-Wagner relaxation time ⌧P
mw

= ✏2+2✏1
�2+2�1

[Eqn. 3.53], the dielectric per-

mittivity mismatch ✏P
21

= ✏2�✏1
✏2+2✏1

and the electric conductivity mismatch �P

21
= �2��1

�2+2�1
[Eqn.

3.54]. The above definition of the critical electric field strength also indicates that the

Quincke rotation only occurs when ✏P
21

> �
P

21
, i.e.

(3.66)
✏2

�2
>

✏1

�1

Since the ratio ✏/� has the unit of time, it’s equivalent to say that the Quincke rotation

only happens in the system where the characteristic time scale in the particle (✏2/�2) is

larger than the one in the liquid (✏1/�1).
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3.6. From stationary to rolling

Up to this point, we are ready to explain the first transition from stationary state to

rolling motion [Fig. 3.2 (b)], which is mathematically described in the previous section

[Sec. 3.5]. Here, it’s helpful to connect each mathematical descriptions with corresponding

experimental phenomena to get more physical understanding of the Quincke rotation.

3.6.1. Mechanism of the Quincke rotation

Under the application of an external electric field, the charge carriers in the liquid are

driven by the field and accumulated at the impermeable particle-liquid interface, which

dominantly forms a dipolar surface charge distribution.

When the external field strength is below the critical electric field strength, the Quincke

particle is motionless (⌦= 0). According to equation 3.51, the steady state electric dipole

moment should be Peq = �
P

21
a
3E0. As the Quincke particle is e↵ectively an insulator

and the liquid is a weakly conducting fluid [table 3.1], the dimensionless number �P

21
is

negative. This indicates that the Quincke particle develops an electric dipole moment

anti-parallel to the external electric field in the steady state [Fig. 3.5, left].

With increasing electric field strength, the magnitude of the anti-parallel electric dipole

moment grows and the Quincke particle becomes more unstable. Once the external field

exceeds the critical field strength Ec, any small perturbations of the Quincke particle will

cause a spontaneous rotation of the particle [Eqn. 3.64]. In the steady state, the flux

of charge carriers from the bulk solution driven by the electric fields [Eqn. 3.36, third

term] is balanced by the surface convection flux of charge carriers [Eqn. 3.36, second

term] caused by the particle rotation. The steady state electric dipole moment forms a
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finite angle with the external electric field [Fig. 3.5, right; Eqn. 3.60], which generates a

constant electric torque Te exerting on the particle and results in a constant rotation of

the particle.

3.6.2. Boundary e↵ects of the bottom electrode surface

So far, the above description does not include any e↵ects from electrode surfaces, which is

commonly used in the experiment [Fig. 3.2 (a)]. As the chamber height is generally much

larger than the particle size [table 3.1], the boundary e↵ect is primarily contributed by

the bottom electrode surface and the existence of the bottom electrode surface modifies

the description of Quincke rotation derived in bulk from two primary aspects.

First, the bottom electrode surface acts as a non-slippery boundary which modifies the

mobility tensors [Eqn. 3.33]. With the existence of the bottom floor, the most direct

consequence is the o↵-diagonal mobility tensors become nonzero, i.e. MUT=M⌦F 6= 0. As

each particles experience an electric torque Te, a non-zero MUT enables the coupling be-

tween torque and translational motion, which is responsible for the translational motion

observed in the Quincke roller experiments [Fig. 3.2(b), middle]. Besides, the bottom

electrode surface also modifies the value of diagonal mobility tensors MUF and M⌦T . De-

pending on the separation distance between the particle and the bottom floor, the values

of all those mobility tensors can be calculated via the method of reflection [136](see also

Sec. 5.3.4.1) or the lubrication theory [121,137,138].
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Second, the bottom electrode surface is a conductor, which is an equi-potential surface.

The surface charges on the particle surface qs induces excess charges on the electrode sur-

face, whose e↵ect can be included by introducing an image dipole P⇤ [also see Sec. 5.3.4.2].

By the image charge method [129], the image dipole P⇤ has reflected in-plane dipole mo-

ments and unchanged out-of-plane dipole moments, i.e. P⇤ = (�Px,�Py, Pz) with the

real dipole P = (Px, Py, Pz). To include the e↵ect of image charges, the external electric

field E0 in Eqn. 3.51 should include the electric field �E⇤ generated by the image dipole.

Besides, the calculation of electric force and electric torque exerted upon the particle also

needs to consider the interactions with the image dipole, i.e. �Fe⇤ ⇡ (P ·r) �E⇤ and

�Te⇤ ⇡ P⇥ �E⇤.

Those boundary corrections are only described qualitatively here and do not a↵ect

the physical mechanism of Quincke rotation described in this section qualitatively. More

quantitative calculations will be discussed in the following section [Sec. 3.7.1].

3.7. The role of the planar electrode

With the first transition from stationary state [Fig. 3.2(b), left] to rolling motion [Fig.

3.2(b), middle] explained successfully by the leaky dielectric model [Sec. 3.4, 3.5 and 3.6],

the second transition from rolling motion to oscillating motion [Fig. 3.2(b), right] is dif-

ficult to understand within the same framework. As shown in equation 3.64, the angular

velocity of Quincke particle should increase monotonically with the external field strength

according to the leaky dielectric model, which means that the Quincke particle should just
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roll faster with increasing electric fields strength and there is no clue of oscillatory motions.

To isolate what is the possible cause of this unexpected oscillating motion, the con-

trolled experiments are conducted between the Quincke particle near the electrode surface

and the Quincke particle in the bulk fluid [Fig. 3.4]. A standing acoustic field is used

to levitate particles at the mid-plane between two planar electrodes [139] and observe

their motion upon application of the electric field. In the absence of the acoustic field,

the application of a strong electric field drives the particles to oscillate at the electrode

surface. Such oscillations are not observed when the same field is applied to particles

levitating at the mid-plane of the chamber. Instead, particles in the bulk fluid exhibit

steady rotation consistent with predictions of the leaky dielectric model [Sec. 3.6].

These experiment results show that the oscillating motion is only observed near the

planar electrode surface, which indicates that the planar electrode should play an impor-

tant role in explaining the oscillatory behaviors.

The Quincke particle is expected to be fairly close to the bottom electrode surface and

only separated by a thin layer of fluid (nanometer thickness [115]). This is because there

is a strong attraction force towards the bottom electrode surface due to the interactions

between surface charges on the Quincke particle and induced excess charges on the elec-

trode surface. This strong attraction force is balanced by a diverging lubrication force

(inversely proportional to the gap distance [137, 138]) in the opposite direction. The

balance of those two forces determines the equilibrium height of the Quincke particle.

The theory presented before [Sec. 3.5] is based on the multipole expansion, which in

principle is no longer valid when the particle is in proximity of a boundary. To understand
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At Electrode Levitated 

4 V/μm 4 V/μm

Figure 3.4. Time-lapse microscopy images showing the dynamics of a single
particle oscillating at the electrode surface (left) and rotating in the bulk
fluid (right). Dashed circles highlight the particle position. The external
field strength in both experiments is Ee = 4 V/µm. Scale bars are 40 µm.
Here, we use 40 µm polyethylene Janus spheres with a white hemisphere
coated on black core (HCMS-BLK-WHT-Polymer from Cospheric Inc.).
Also visible in the images are 1 µm fluorescent particles (white), which
aid in visualizing the motion of the larger particle. Particle levitation is
achieved using a piezoelectric transducer adhered to the outside of the top
electrode. The transducer is driven by a sinusoidal voltage signal with an
amplitude of 10 V and a frequency of 3.6 MHz. The precise frequency is
tuned to create a standing acoustic field with wavelength equal to twice the
electrode separation L = 200 µm. Under these conditions, particles levitate
at the mid-plane equidistant from the two parallel electrodes.

the possible e↵ect from the electrode surface, one intuitive attempt is to include the e↵ects

from the conducting electrode surface properly to see whether the oscillating motion can

be found.

3.7.1. Multipole expansion near a planar electrode

Previous results derived in the bulk fluid [Eqn. 3.51] only consider the contribution from

the electric dipole moments as the top and bottom of the system are symmetric. The
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existence of the bottom electrode breaks this symmetry and nonvanishing higher order

moments of charge distribution are expected. A straightforward approach to include the

e↵ect of the electrode surface is to include higher order moments in the leaky dielec-

tric model and also its image counterparts to maintain the constant potential boundary

condition at the electrode surface.

More specifically, assume a particle positioned at (0, 0, h) rotates around x-axis, i.e.

⌦ = !x̂. The planar electrode is located at z = 0 and the external electric fields is

applied along the z-axis. Then, the electric dipole P and quadrupole moments Q can be

expressed as the following form:

(3.67) P = (0, py, pz) , Q =

0

BBBB@

�Qyy �Qzz 0 0

0 Qyy Qyz

0 Qyz Qzz

1

CCCCA

The corresponding image moments are located at (0, 0,�h) and have the following form:

(3.68) P⇤ = (0,�py, pz) , Q⇤ =

0

BBBB@

Qyy +Qzz 0 0

0 �Qyy Qyz

0 Qyz �Qzz

1

CCCCA

In addition to the electric potential contributed by the real charges [Eqn. 3.42 and 3.43],

the disturbance potential contributed by image charges are:

(3.69) �'
⇤(r) =

r ·P⇤

r3
+

1

2

rr : Q⇤

r5
+ · · · , z > 0
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With this setup, similar procedure described in section 3.5 can be executed to get

the time evolution equations of high order moments with image charge corrections. In

principle, arbitrary orders of charge moments can be include to get accurate results near

the planar electrode. However, in practice, the calculation quickly becomes tedious and

error-prone with increasing order of moments. The calculation up to quadrupole moments

was carried out and the results do not reproduce the oscillatory motion observed in the

experiment. For the sake of brevity, those calculations are not recorded here as it can be

easily derived by following the derivations in section 3.5.

3.7.2. Analytical results near a planar electrode

The multipole expansion approach has inherent limitations when dealing with near-

contact problems. This is because the multipole expansion essentially treats the particle

as a point particle with electric moments upon it. This prohibits the multipole expansion

solutions from incorporating some important length scales such as the particle radius a

and the gap distance � when the particle is in close contact with the boundary [140,141].

This point is evidenced by the results derived in the bulk fluid [Eqn. 3.64 and 3.65],

where both predicted angular velocity ⌦ and critical field strength Ec depend on neither

the size of particle nor the gap distance. This is clearly contradicted to the experiment

observations [107,115] and simulation results [142].

Therefore, another more brutal-force way to study the role of bottom electrode is to

solve the leaky dielectric model near a planar electrode analytically. This is of course

di�cult and messy and I did not succeed. Here, I just document some major e↵orts for

reference.
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Consider a single Quincke particle is in proximity of a bottom planar electrode sur-

face. The governing equation describing the problem is still the same as previous leaky

dielectric model [Sec. 3.4] with additional boundary conditions enforced by the elec-

trode surface. The hydrodynamic part is identical to the lubrication problems, which

has been extensively studied and its analytical solutions are readily available in litera-

ture [121,137,138,143–145]. Thus, the rest of this problem becomes solving the Laplace

equation with the boundary conditions unique to the Quincke rotation system.

Due to the planar boundary and spherical geometry of the Quincke particle, it turns

out the so-called bispherical coordinate system makes the specification of boundary condi-

tions much easier (as both planar and spherical surfaces are the coordinate surfaces of the

bispherical coordinate system) at the cost of a more complicated infinite series expression

of the general solution of the Laplace equation [see Appx. A.2].

For a purely dielectric particle near a planar boundary, such problem has already been

solved in [146], where boundary conditions yield a set of infinite recurrence relations.

Please refer to [146] for more details. Fortunately, the solution of the resulting recurrence

relations can be constructed analytically using a Green’s function technique for finite

di↵erence equations [147], which has a form of continued fractions.

Following the same spirit, all boundary conditions of a single Quincke particle near an

planar electrode can also be expressed in the bispherical coordinate system. However, the

boundary conditions yields a higher order recurrence relations this time, i.e. the recur-

rence relation depends on the second-nearest-neighbor terms (An�2, An�1, An, An+1, An+2

instead of just An�1, An, An+1). It’s not easy to obtain the analytical solution of such
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infinite finite di↵erence equations [147]. All those inconclusive analytical results can be

derived by following [146] and will not be reported here for brevity.

3.8. The numerical model of a single Quincke roller

As theoretical attempts based on the multipole expansion 3.7.1 and analytical analysis

3.7.2 encountered di�culties, the numeric approach provides an alternative pathway for

understanding the role of planar electrode. With the theoretical description of a single

Quincke particle detailed in Sec. 3.4, the Laplace equation 3.31 together with boundary

conditions Eqn. 3.34, 3.35,3.36,3.37 and 3.38 can be solved self-consistently to study the

behaviors of a single Quincke particle near a planar electrode surface.

The Laplace equation [Eqn. 3.31] and boundary conditions such as the continuity

of electric potential [Eqn. 3.34], the normal jump of electric displacement fields [Eqn.

3.35] and constant electric potential [Eqn. 3.37 and 3.38] are standard components of

electrostatic solvers of any commonly available Finite Element Method (FEM) simulation

packages, such as COMSOL, ABAQUS, FEniCSx, etc. The only exception is the surface

charge conservation equation [Eqn. 3.36], which is unique for the Quincke rotation prob-

lem and has to be implemented manually. The surface charge conservation equation is a

PDE defined on the particle surface and any FEM packages provide the boundary PDE

solver can be used for solving the Quincke problems. Below, we will only focus deriving

the explicit form of Eqn. 3.36 for the spherical particle case, which in principle can be

generalized to any smooth parametrizable surfaces.
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3.8.1. Surface charge conservation

As the surface charge conservation equation is defined on a curved surface, it’s important

to express the quantities defined on the surface to its embedded 3D Euclidean space (R3).

3.8.1.1. surface fluxes. For a spherical surface, the surface flux Js can be written as:

(3.70) Js = qsus = qs⌦⇥ an̂

where ⌦ is the angular velocity, n̂ is the unit outer normal vector of the particle surface,

qs is the free surface charges and a is the radius of the particle. As the Quincke rotation

occurs in the plane perpendicular to the external electric field, i.e. ⌦ ·E0 = 0 [Eqn. 3.62].

By assuming the external field is along the z-axis, the general angular velocity can be

expressed as:

(3.71) ⌦ = !xx̂+ !yŷ

where !x and !y are the respective x and y component of angular velocity. In the spherical

coordinate system [Appx. A.1], n̂ = r̂ = sin ✓ cos�x̂+sin ✓ sin�ŷ+cos ✓ẑ and the surface

flux Js can be rewritten in the spherical coordinates as:

(3.72) Js = qsa(!y cos�� !x sin�)✓̂ � qsa cos ✓(!y sin�+ !x cos�)�̂ = T
iti

where tangent vectors ti are defined as:

(3.73) tr =
p
grrr̂ = r̂, t✓ =

p
g✓✓✓̂ = r✓̂ = a✓̂, t� =

p
g���̂ = r sin ✓�̂ = a sin ✓�̂
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And corresponding contravariant components T i are:

(3.74) T
r = 0, T

✓ = qs(!y cos�� !x sin�), T
� = �qs cot ✓(!y sin�+ !x cos�)

As the surface charge flux is a vector in the tangent space of the particle surface, i.e.

Js = T
iti, the surface divergence operator is just the covariant divergence [132,148]:

(3.75)

rs · Js = T
i

;i
= T

i

,i
+ �

i

ji
T

j = T
r

,r
+ T

✓

,✓
+ T

�

,�
+

2

r
T

r + cot ✓T ✓

=
@qs

@✓
(!y cos�� !x sin�)�

@qs

@�
cot ✓(!y sin�+ !x cos�)

where the subscript , and ; denote the Euclidean derivative and the covariant derivative,

respectively. And �
k

ij
is the Christo↵el symbol [Appx. A.1]. As expected, the surface

charge flux is non-zero only when there is a gradient of surface charge distribution.

3.8.1.2. bulk fluxes. Another contribution to the surface charge conservation is from

the discontinuity of the bulk charge flux, which can easily written in the spherical coor-

dinates as:

(3.76) n̂12 ·
⇥
J2

e
� J1

e

⇤
= r̂ · [�2E2 � �1E1]

where Je
i = �iE = ��ir'(r), i = 1, 2, are the respective electric current in the fluid

(i = 1) and the particle (i = 2).

3.8.1.3. surface charge conservation. Combining the surface flux term and the bulk

flux term together, the surface charge conservation equation [Eqn. 3.36] can be expressed

in the spherical coordinate system as:

(3.77)
@qs

@t
+�2r̂·E2��1r̂·E1+

@qs

@✓
(!y cos��!x sin�)�

@qs

@�
cot ✓(!y sin�+!x cos�) = 0
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In most FEM simulation packages, it’s more convenient to implement in the Cartesian

coordinates and the above equation can be transformed back into Cartesian coordinates:

(3.78)
@qs

@t
+ n̂ · [�2E2 � �1E1] +

@qs

@x
!yz �

@qs

@y
!xz +

@qs

@z
(!xy � !yx) = 0

If we relax the constraint that the angular velocity should be perpendicular to the field

direction, i.e. ⌦ · E0 = 0, the surface charge conservation equation can be written in a

more familiar form:

(3.79)
@qs

@t
+ n̂ · [�2E2 � �1E1] + us ·rqs = 0

where us = ⌦⇥ r|
r=a

and r is the usual Euclidean gradient operator.

The whole derivation may seem introducing unnecessary complication as Eqn. 3.79

should be a pretty obviously result, which basically projects the gradient of surface charges

into the tangent plane of the particle surface. However, this is obvious for the symmetric

spherical surface and this method can be modified to derive the explicit form of the surface

charge conservation equation for arbitrary parametrizable surfaces.

3.8.2. Self-consistent model of a single Quincke particle

With the explicit expression of the surface charge conservation equation [Eqn. 3.79], it

can be implemented as a user-defined PDE via the boundary PDE module of COMSOL

while other electrostatic-related equations can be solved by the electrostatic module of

COMSOL. The hydrodynamic interactions are treated implicitly via the resistance matrix

formulation and the angular velocity of the particle is obtained via the torque balance
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as detailed in Sec. 3.5.4. Both modules are solved simultaneously which yield the FEM

solutions as shown in Fig. 3.5. Fig. 3.5 (left) shows the surface charge distribution of

a stationary Quincke particle, which has an overall anti-parallel electric dipole moment

while Fig. 3.5 (right) demonstrates the surface charge distribution of a rotating Quincke

particle. It confirms the existence of tilted electric dipole moment, which generates the

electric torque with the external electric field for propelling the Quincke particle.

However, although the self-consistent model agrees exceptionally well with the expla-

nation of Quincke rotation [Sec. 3.6], the numeric simulations still do not recover the

oscillatory motion observed in the experiment. The numeric simulations indeed unveil

some e↵ects of the planar electrode surface, such as inducing higher order electric mo-

ments, stabilizing the critical field of rolling motion [Fig. 3.10], etc., but none of them are

su�cient for explaining the robust oscillation at the high field limit. Those findings lead

us to think that there may have some e↵ects due to the electrode surface are outside the

framework of the leaky-dielectric model.

Figure 3.5. Surface charge distribution of stationary (left) and steady ro-
tating (right) Quincke particle. An uniform electric field E0 is applied along
the z-axis and the particle is rotating around the x-axis with angular veloc-
ity ⌦. The color depicts the surface charge density. The bottom electrode
surface is not depicted in the figure.
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3.9. The boundary layer near electrode surface

As informed by the simulation results in Sec. 3.8, we will do a detailed theoretical

analysis of the confined electrolyte used in Quincke particle experiments in this section

to figure out the possible e↵ects caused by the electrode surface.

3.9.1. Conductivity of AOT/hexadecane solution

The anionic surfactant, sodium bis(2-ethylhexyl) sulfosuccinate (AOT), forms inverse

micelles in hexadecane above a critical micelle concentration (CMC) of ⇠ 10�6 M [130,

149]. Small-angle neutron scattering (SANS) data [150] suggest that each inverse micelle

contains N⇡ 20 AOT molecules with a polarizable core of radius ac ⇡ 1 nm and a

hydrodynamic radius of ah⇡ 1.7 nm . At equilibrium, the charge fluctuation theory [151]

predicts the number density of charged micelles to be

(3.80) nz = n0 exp

✓
�z

2
�B

2ac

◆

where n0 ⇡ [AOT]

N
is the concentration of uncharged micelles, z is the valence of charged

micelles, and �B is the Bjerrum length,

(3.81) �B =
e
2

4⇡✏kBT
⇡ 28.5nm

where e is the elementary charge, ✏ = 2✏0 is the permittivity of hexadecane, kB is the

Boltzmann constant, and T= 298 K is the temperature. The fact that �B/2ac ⇡ 14 � 1

implies that nearly all of the charged micelles have unit valence, z = ±1. Then, the
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conductivity of the whole solution in the equilibrium can be approximated as:

(3.82) � =
X

z

z
2
e
2
D

kBT
nz ⇡

2e2D

kBT
n0 exp (��B/2ac)

Using the Stokes-Einstein (S-E) relation, it can be expressed as:

(3.83) � =
2e2

6⇡⌘ah
n0 exp (��B/2ac)

where the mobility of charged micelle is estimated as µ= D

kBT
⇡ (6⇡⌘ah)�1 and ⌘ = 3

mPa·s is the dynamic viscosity of hexadecane [see table 3.1].

3.9.2. Analysis of chemical reactions

Since the experimental concentration of AOT solution (⇠ 0.15 M) is well above the

CMC (⇠ 10�6 M), the charge carriers are dominated by the charged micelles and the

conductivity increases linearly with the AOT concentration in agreement with previous

experiments [130]. Therefore, the association-disassociation reaction of interests in the

AOT/hexadecane solution is:

(3.84) 2M
(n1,z1=0)

k+��*)��
k�

M+

(n2,z2=+1)

+ M�
(n3,z3=�1)

where [M] is the concentration of neutral micelles, [M+] is the concentration of positively

charged micelles and [M�] is the concentration of negatively charged micelles. k+ is the

forward rate constant and k� is the backward rate constant.
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The forward rate constant can be obtained via the chemical equilibrium:

(3.85)
[M+][M�]

[M]2
=

k+

k�
= exp (��B/ac)

i.e.

k+ = k� exp (��B/ac)

Therefore, the reaction rates of each species are:

�r1 = r2 = r3 = k+n
2

1
� k�n2n3 = k�

⇥
n
2

1
exp (��B/ac)� n2n3

⇤

where ri is the source/sink of i-th species. Because the concentration of charged species

(n2 and n3) are very dilute, we can approximate the concentration of the neutral species

(n1) by its equilibrium concentration, i.e. n1 ⇡ n0. Then,

(3.86) � r1 = r2 = r3 = k�
⇥
n
2

0
exp (��B/ac)� n+n�

⇤
= k�

�
n
2

eq
� n+n�

�

where neq = n
2

0
exp (��B/2ac) is the equilibrium concentration of neutral species, n+ = n2

and n� = n3 are the concentration of positively and negatively charged species, respec-

tively.

If the recombination of charged species is assumed to be di↵usion-limited, the rate

constant can be estimated [118,152] as:

(3.87) k� = 8⇡D�B =
2e2µ

✏
⇡ 2.9⇥ 10�17 m3

/s

where D= kBTµ is the micelle di↵usivity. The micelles approach their equilibrium ioniza-

tion with a characteristic time scale (2k�neq)�1, which is equal to one half of the charge
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relaxation time ✏/�0. For a 0.1 M AOT solution, the equilibrium ion concentration is

neq ⇡ 7 ⇥ 10�8 M and the ion relaxation time is (2k�neq)�1 � 0.4 ms with equality for

di↵usion-limited recombination [107].

Finally, we can solve the Nernst-Planck equation for charged micelles to get the trans-

port behaviors of charge carriers:

(3.88)
@n±

@t
+r · J± = kr

�
n
2

eq
� n+n�

�

where the corresponding fluxes of each charged species (ignoring the convective flux) are

J± = �D±rn± ± eD±

kBT
n±E

and the equilibrium concentration of neutral species is

neq =
[AOT]

N
exp (��B/2ac)

3.9.3. Analysis of the equilibrium charge distributions

With the understanding of the origin of electric conductivity and relevant chemical reac-

tions in AOT/hexadecane solution, the assumption of zero space charge in the leaky dielec-

tric system [Sec. 3.3] should be relaxed. Including possible nonvanishing space charges,

the relevant governing equations become the Poisson-Nernst-Planck (PNP) equations:

(3.89)

8
>><

>>:

r · (✏r✏0E) = e(n+ � n�)

@n±

@t
+r ·


�D±rn± ± eD±

kBT
n±E

�
= k�

�
n
2

eq
� n+n�

�
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As the system under consideration is confined by two planar electrodes, the problem

can be e↵ectively reduced as a 1D problem. Without loss of generality, assume the planar

electrodes are placed along the z-axis, then

8
>><

>>:

�✏@
2
'

@z2
= e(n+ � n�)

@n±

@t
�D

@
2
n±

@z2
⌥ eD

kBT

@

@z

✓
n±

@'

@z

◆
= k�(n

2

eq
� n+n�)

Note that the Quincke rotation/oscillation only happens in high electric field strength

regime (see table 3.1), i.e. '� kBT

e
⇠ 25 meV. Thus, the di↵usion flux is negligible

comparing with the electric migration flux and the above equations in the steady state

simplify as:

(3.90)

8
>>>>>>><

>>>>>>>:

�✏@
2
'

@z2
= e(n+ � n�)

� eD

kBT

@

@z

✓
n+

@'

@z

◆
= k�(n

2

0
� n+n�)

eD

kBT

@

@z

✓
n�

@'

@z

◆
= k�(n

2

0
� n+n�)

Introducing the sum of ion concentrations, ns = n+ + n�, and the di↵erence of ion

concentrations, nd = n+ � n�, the governing equations can be rewritten as

(3.91)

8
>>>>>>><

>>>>>>>:

@E

@z
=

e

✏
nd

@

@z
(nsE) = 0

eµ
@

@z
(ndE) = 2k�


n
2

0
� 1

4

�
n
2

s
� n

2

d

��

where E= �@'

@z
is the total electric field and µ= D

kBT
is the mobility of charged micelles.

Integrating the second equation above basically requires that the electric current Je should
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be constant through out the electrolyte, i.e. je = e
2
µnsE. Since there are nonzero space

charges comparing with original equations for the leaky dielectric systems [Eqn. 3.27], we

would like to understand how the limited reaction rates in the weak electrolyte will a↵ect

equilibrium charge distribution.

3.9.3.1. Semi-infinite weak-electrolyte confined by one boundary. The first sim-

ple system is to consider the weak-electrolyte confined by a single boundary. This cor-

responds to the electrolyte in contact with a single planar electrode surface and extend

to infinite in the other direction. Physically, it requires all quantities reduce to its bulk

values at infinite:

(3.92) nd(1) = 0, ns(1) = 2neq, E(1) = E0

where neq is the equilibrium concentration in the bulk and E0 is the external electric field

strength. By the conservation of electric currents, this gives that

(3.93) je = e
2
µnsE = 2e2µneqE0

Expressing both ns and nd in terms of the electric field E by substituting the Poisson’s

equation [Eqn. 3.91] and the above equation [Eqn. 3.93], we obtain the following nonlinear

equation of the electric field:

(3.94)
d2
E

2

dz2
=

4k�n2

eq

µ✏

"
1� E

2

0

E2
+

1

E2

✓
✏

4eneq

d2
E

2

dz2

◆2
#

Besides, in the strong field strength limit, all positive charge carriers should be depleted

from the electrode surface (z = 0) assuming the applied electric field is along the positive
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z direction (E0 > 0), i.e.

(3.95) n+(0) =
1

2
[ns(0) + nd(0)] = 0

which can be expressed in terms of electric fields as

(3.96)


2neq

E0

E(z)
+
✏

e

dE

dz

�

z=0

= 0 i.e.
d2
E

2

dz2

����
z=0

= �4eneqE0

✏

The equation 3.91 is a second order ODE with an infinite interval, which can be solved

numerically. However, it’s more instructive to get further insights via the perturbation

analysis before presenting its numeric results. Denote the first order perturbation as

u = E
2 � E

2

0
, it gives that

(3.97)
d2
u

dz2
=

4k�n2

eq

µ✏E
2

0

u+O(u2)

This equation permits solutions of exponential forms, which indicates that the per-

turbation due to the existence of electrode surface decays over a length scale defined

as:

(3.98) � =
E0

2neq

r
µ✏

k�
=

1

2
�`

For clarity, this new length scale � is split into another length scale ` = eµE0/k�neq

and a dimensionless parameter � = (k�✏/e2µ)1/2, which characterizes the relative rates

of charge formation (2k�neq) and charge relaxation (2e2µneq/✏). Assuming the di↵usion-

limited approximation (3.87) for the recombination rate constant k�, these two rates are

approximately equal, � =
p
2, as are the two length scales, `/� =

p
2. For a 0.1 M
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AOT/hexadecane solution subject to an external field of E0 = 5 V/µm, this length is

estimated to be � ⇡ 5 µm. For comparison, the Debye length is �D= (✏kBT/2e2neq)1/2 ⇡

0.2 µm.

The emergence of this new length scale � brings us new insights about the system,

which is also clearly confirmed by the numeric solutions [Fig. 3.6]. Note that the length

scale is proportional to the external field strength E0 and inversely proportional square

root of the backward reaction rate
p
k�. For a strong electrolyte or weak electric field

strength, the length scale � is small comparing with the Debye length �D. And the

Debye length (�D⇠ 200 nm) is much smaller than the particle size (a⇠ 5 µm). Thus,

the original assumptions of the leaky dielectric model [Sec. 3.3] are valid. However, as

the experimental conditions push into the regime of strong electric fields, the length scale

� becomes much more significant, even comparable with the particle size (⇠ 5 µm). It

means the electroneutrality condition is no longer valid near the electrode surface.

3.9.3.2. Finite weak-electrolyte confined by two boundaries. After realizing the

existence of boundary layer near the electrode surface, a more experimentally relevant

example is the case with two boundaries. Instead of confining by a single electrode, let’s

consider a weak-electrolyte confined by two electrode surfaces. Note that now the electric

currents Je is no longer determined by the values at infinity [Eqn. 3.93] and need to be

determined later from the following potential di↵erence condition:

(3.99)

Z
H

0

E(z)dz = E0H
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n-
E
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z

Figure 3.6. Number density of positive and negative charge carriers, n+

and n�, and the electric field E as a function of distance z from a planar
electrode. Here, number densities are scaled by its equilibrium value neq,
the field by the external field E0, and position by the characteristic length
� [Eqn. 3.98]. The recombination parameter is �2 = 2 corresponding to
di↵usion-limited recombination. The dashed curve shows the asymptotic
prediction of the first order perturbation solution.

where H is the separation distance between two electrodes. Then, the governing equation

of the electric fields in its dimensionless form becomes

(3.100)
d2
E

dz2
= 1� j

2

e

4E2
+

�
2

4E2

✓
dE2

dz

◆2

where the electric field is scaled by E0, electric current is scaled by e
2
µneqE0 and distance

is scaled by the characteristic length �. Corresponding boundary conditions at each

electrode are:

(3.101)
d2
E

2

dz2

����
z=0

= �je

�
and

d2
E

2

dz2

����
z=H

=
je

�
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Figure 3.7 (left) shows the electric field and the charge carrier profiles for H = 1 and

�
2 = 2. Due to the confined volume in which ions are generated, the associated current

is only je = 0.655 as compared to je = 2 in the limit of large separations (H ! 1).

Figure 3.7 (right) shows the computed current density je as a function of the boundary

separation H. For H ⌧ 2, the current is limited by the rate at which ions are generated

within the electrolyte: je ⇡ �L/2. In dimensional units, the apparent conductivity of the

electrolyte depends linearly the boundary separation as

(3.102) � =
je

E0

⇡
ek�n

2

eq
H

E0

for H ⌧ 2�

The diminishing conductivity for the strongly confined electrolyte has important im-

plications for the Quincke particle under strong electric fields. As the Quincke particle is

strongly attracted to the bottom electrode surface and only separated from the electrode

by a thin lubrication layer, the gap region between the particle and electrode has limited

generation of charge carriers and leads to a smaller conductivity comparing with the bulk

conductivity.

3.10. From rolling to oscillating

After identifying the boundary layer near the electrode for the weak-electrolyte under

strong electric fields, experiment conditions are systematically tested to map out the

necessary conditions for the oscillating motion [Fig. 3.8].
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Figure 3.7. (left) Number density of positive and negative charge carriers,
n+ and n�, and the electric field E as a function of position z between
two electrodes separated by H = 1. Number densities are scaled by the
equilibrium density neq, the field by the external field E0, and position
by the characteristic length �. The recombination parameter is �2 = 2
corresponding to di↵usion-limited recombination. (right) Electric current
density je (scaled by e

2
µneqE0) as a function of the boundary separation

H. For small separations (H ⌧ 2), the current is je ⇡ �H/2; for large
separations (H � 2), it approaches je = 2.

3.10.1. Phase diagram of observed Quincke particle dynamics

Oscillatory dynamics are reliably observed for strong fields, E0/Ec > 3, when the ratio

between the particle radius and the boundary layer thickness is of order unity, a/` ⇠ 1

[Fig. 3.8]. With all experiment conditions explored, the resulting boundary layer thickness

` varies from 1 to 20 µm depending on the AOT concentration and the external field

strength E0. Notably, large particles (a/` � 1) that extend beyond the boundary region

do not oscillate but rather roll at even the highest fields investigated [Fig. 3.8, the line at

top]. Small particles (a/` ⌧ 1) do not move at all and their otherwise Brownian motion

is arrested upon application of the field [Fig. 3.8, the line at bottom].
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0

Figure 3.8. Phase diagram showing the observed dynamics as a function of
two dimensionless parameters: a/`, the ratio of the particle radius and the
boundary layer thickness [Eqn. 3.98]; E0/Ec, the ratio of the external field
strength and the critical field [Eqn. 3.65]. Plotted data correspond to exper-
iments on five di↵erent particle sizes a = 0.5, 1.5, 2.5, 5, 25 µm (for [AOT] =
150 mM) and three di↵erent AOT concentrations [AOT] = 50, 100, 150 mM
(for a = 5 µm).

3.10.2. Characteristics of the oscillatory motions

The oscillation period !�1 is comparable to the dipolar Maxwell-Wagner relaxation time

⌧
P

mw
[Fig. 3.9 (a)] and the oscillation frequency ! increases with increasing field strength

[Fig. 3.9 (b)]. The peak-to-peak amplitude of the oscillating particle position is approx-

imately 2A ⇡ ⇡a [Fig. 3.9 (c)]. This observed quantity is linearly related to the angle

2A/a by which the particle rotates during each half of the oscillation cycle. If one as-

sumes frictional rolling with  = 1, the observed amplitude would imply a rotation of
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ca. 180�. By contrast, the assumption of hydrodynamic rolling with a thin lubricating

film [121] requires that   1/4 and implies a rotation of at least two revolutions per

half cycle. Below, we present a model for particle oscillations that favors the former

interpretation based on frictional rolling.

a

b c

A

00

Figure 3.9. (a) Particle position r vs. time t for PS spheres (radius a =
5 µm) in di↵erent AOT/hexadecane solutions. The applied field is E0/Ec =
5.4, which corresponds to E0 = 2.2, 3.7, and 4.8 V/µm for [AOT] =50, 100,
and 150 mM, respectively. (b) Oscillation frequency ! vs. external field
strength E0 for di↵erent AOT concentrations. Markers denote the mean
frequencies within populations of particle trajectories of equal duration;
error bars denote standard deviations of these populations. (c) Peak-to-
peak oscillation amplitude 2A vs. external field strength E0 for the three
AOT concentrations in (b). Markers denote the mean frequencies; error
bars denote standard deviations.
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3.10.3. Mechanism of the Quincke oscillations

To understand why particles of intermediate size oscillate near the electrode [Fig. 3.8],

we first consider the transport of charged AOT micelles around a stationary sphere near

a plane boundary [Fig. 3.10 (a) and (b)]. The electric field and the charge carrier den-

sities are modeled using the Poisson-Nernst-Planck (PNP) equations [Eqn. 3.89] mod-

ified to describe the generation and recombination of charged micelles within the elec-

trolyte [118,142]. At steady state, the solution is characterized by three length scales:

the particle radius a, the Debye length �D= (✏fkBT/2e2no)1/2, and the boundary layer

thickness ` associated with carrier recombination [Eqn. 3.98]. We focus our analysis on

the limit of strong fields relevant to our experiments, for which E0 � kBT/e` or, equiva-

lently, ` � �D.

Under these conditions, the behavior of large spheres (a � `) is well described by

the leaky dielectric model. Charge accumulates at the particle surface as to redirect the

electric field and the associated electric current around the particle [Fig. 3.10 (a)]. The

Quincke instability is caused by the relaxation of this dipolar charge distribution via par-

ticle rotation [Sec. 3.6].

For small spheres (a ⌧ `), however, the accumulation of charge at the particle surface

is mitigated by the di↵usive-leaking of charge carriers around the sides [Fig. 3.10 (b)].

The comparatively little charge that accumulates does not significantly alter the electric

field. Without a su�ciently large dipole moment directed anti-parallel to the external

field, there is no Quincke rotation for these small particles [cf. Fig. 3.8]. Moreover, such
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particles are characterized by a net charge that contributes additional electrostatic forces

directed to the nearby electrode. The attraction of small particles to the electrode surface

helps to explain the field-induced arrest of their Brownian motion.

For particles of intermediate size (a ⇠ `), the observed oscillations are explained by

asymmetries in the rates of charging between the top and bottom of the particle. Within

the confined region separating the particle and the electrode, ionic currents are limited

by the finite rate of ion formation in the fluid. The e↵ective conductivity within such a

region of thickness � can be approximated as ek�n2

o
�/E0, which is smaller than the bulk

conductivity, �f ⇡ 2e2µno, by a factor of `/� � 1. By modifying the leaky dielectric

model to describe variations in the e↵ective conductivity as a function of distance from

the electrode surface, numerical simulations are able to reproduce the particle oscillations

observed in experiment [Fig. 3.10 (c), pink diamonds & blue circles].

3.10.4. Simulation results of a single Quincke oscillator

In the model, we consider a dielectric sphere of radius a immersed in a conductive fluid

at a distance � from a plane electrode. Application of an external field E0 drives the

accumulation of charge at the particle-fluid interface; the e↵ects of free charge within

the electrolyte are neglected. The fluid conductivity is assumed to vary with distance

z from the electrode as �fz/(2a + �), approaching the bulk value �f at the top of the

particle. The angular velocity of the particle (parallel to the plane) is linearly related

to the electric torque as ⌦ = L/R, where R = 8⇡⌘a3f(�/a) is the relevant resistance

coe�cient. With these assumptions, the particle dynamics agree qualitatively with the
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experimental observations [cf. Fig. 3.2 (c) & 3.10 (c)]. At su�ciently high field strengths—

here, greater than 3.7 times the critical field Ec for an unbounded sphere—the particle

oscillates back and forth with an peak-to-peak amplitude of ca. 200� [Fig. 3.10 (d)]. The

oscillation frequency ! increases in proportion to the external field strength E0 [Fig. 3.10

(e)].

3.11. Discussion and future works

Physically, particle oscillations combine the basic elements of the traditional Quincke

mechanism—namely, charge accumulation and mechanical relaxation—with an added

memory e↵ect caused by anisotropic charging within the electric boundary layer, which

is fundamentally di↵erent from the hydrodynamic memory e↵ect [153–158] found in the

transient Stokes flows. Additional experiments on particles of di↵erent shapes suggest

that these Quincke oscillations can be achieved for any dielectric particle of suitable size

[see [107] SI]. This mechanism may therefore provide a useful experimental model for

active matter [159] comprised of many self-oscillating units, where particle interactions—

neglected herein—mediate their collective dynamics. More generally, Quincke oscillations

illustrate the potential importance of field-induced boundary layers within nonpolar fluids.

Even away from electrode surfaces, such boundary layers are expected to influence the

dynamics of micron-scale Quincke swimmers moving within bulk fluids [116,160–162].

It’s rare to observe an oscillatory motion via a static field input and such Quincke

oscillators might provide some inspirations for the design of colloidal oscillators with

other types of active colloidal particles. With a oscillatory mobility unit, it’s interesting

to explore the collective behaviors of a population of colloidal oscillators [also see Sec.
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Figure 3.10. (a,b) Simulated electric field around a stationary sphere in
a model electrolyte above a plane electrode; color map shows the charge
density. The radii of the large (a) and small (b) spheres are a/` = 3.5
and a/` = 0.14, respectively. Other parameters include the Debye length
�D/` = 0.028, the surface separation �/a = 0.1, the particle permittivity
✏p/✏f = 1.2, and the recombination rate constant k�✏f/e2µ = 2. (c) Time-
averaged angular speed ⌦ scaled by ⌧�1

mw
vs. external field strength E0 scaled

by Ec for three variations of the leaky dielectric model: an unbounded
sphere, a sphere at a plane electrode with constant fluid conductivity, and
a sphere at an electrode with a conductivity gradient. The particle permit-
tivity is ✏p/✏f = 1.5; the surface separation is �/a = 0.1; the conductivity
gradient is �f/(2a + �); the resistance coe�cient is R/8⇡⌘a3 = 1.45. The
shaded region denotes one standard deviation about the average speed. (d)
Angular position ✓ vs. oscillation phase !t for E0 = 5.3Ec. (e) Oscillation
frequency ! scaled by ⌧�1

mw
vs. external field strength E0 scaled by Ec.
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5.5], which might result in very di↵erent collective patterns commonly observed for a

population of colloidal rollers.
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CHAPTER 4

Hydrogel Robots∗

4.1. Introduction

The design of miniature robots is an enormous challenge of science and engineer-

ing [164–171]. Building a microrobot, which integrates functionalities to sense its sur-

rounding environment [172–175], communicate information [176–178] and actuate itself

[179–182] to any targeted locations [55,183–185] with sustained power supply [186–188]

in a controllable manner [189–191], is a long-term objective. Because microrobots are

subject to the principles of microscopic physics, the mechanism to realize each functional-

ities di↵er from those counterparts of conventional large scale robots. Tremendous e↵orts

have been made to successfully realize individual or a combination of those functionalities

and shown great potential applications [59,63,85,186,190,192].

Throughout those investigations [193–196], soft materials have shown great advan-

tages as building blocks of microrobots. Unlike conventional robots connect rigid parts via

joints, soft materials allow to build microrobots as a whole, which reduce the complexity

of manufacture and assembly. Besides, the unique mechanical properties of soft materials

∗This chapter is primarily based on the published work [163] of Chuang Li⇤, Garrett C. Lau⇤,
Hang Yuan⇤, Aaveg Aggarwal, Victor Lopez Dominguez, Shuangping Liu, Hiroaki Sai, Liam C. Palmer,
Nicholas A. Sather, Tyler J. Pearson, Danna E. Freedman, Pedram Khalili Amiri, Monica Olvera de
la Cruz† and Samuel I. Stupp†, Fast and programmable locomotion of hydrogel-metal hybrids

under light and magnetic fields, Science Robotics, Vol. 5, No. 49, p.eabb9822, 2020, with modified
notations and extended details to comply with the structure of this work.

https://www.science.org/doi/10.1126/scirobotics.abb9822
https://www.science.org/doi/10.1126/scirobotics.abb9822
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permit morphological changes with large deformations, which enables flexible manipula-

tions and versatile functions. The soft materials also show excellent bio-compatibility,

which make them ideal for medical applications.

More importantly, nowadays it’s possible to synthesize soft materials hybridized with

various dimensional nanocomponts [197], enabling additional responsiveness to various

external stimuli. This imparts living characteristics into passive materials and turn it into

a microrobots. Like biological microrobots such as bacteria, the responsiveness to exter-

nal stimuli o↵er venues to sense its local environment, harness power to actuate itself and

carry controlled locomotion. Synthetic microrobots, which respond to heat [198, 199],

light [200], electric field [179,201,202], magnetic field [203,204], etc, has been reported

and demonstrated similar functionalities of living organism. However, most of previous

works focus on only one external stimulus. Inspiring by biological systems, a real mi-

crorobots should be able to respond to multiple external stimuli in a coordinated way.

It motivates us to study possible design of a soft robot which has multiple responsive-

ness. Among those possible choices of external stimuli, we are particularly interested

in light and magnetic fields because of its non-invasiveness in biological systems. Also,

there are existing infrastructures commercially available to generate high temporal and

spatial resolution of both light and magnetic fields. Therefore, we will focus on building

a microrobots from soft materials which respond to both light and magnetic fields.

In recent years, it has been shown that magnetic fields can remotely direct motions

of soft materials containing ferromagnetic components of various dimensions, such as

filaments [59, 205], slabs [55], 2D sheets [191, 204] and 3D structures [53]. In these
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examples, specific patterns of magnetization and object geometry were generated by var-

ious fabrication techniques, such as lithography, 3D printing and so on. However, once

these samples have been prepared, the responsive magnetization profile cannot be re-

configured in the absence of a magnetic field. Moreover, the magnetic components were

either embedded in a solid hydrophobic elastomer or supported on a rigid silicon nitride

membrane. Hydrogels, which consist of mostly water, o↵er the possibility to function in

water and also have the capacity to exchange fluids with aqueous environments. And

hydrogels generally have small elastic moduli, which makes them a lot easier to deform

comparing with elastomers. Besides magnetic response, light as a stimulus is useful since

it can be delivered remotely and potentially in localized fashion. Recent examples of light

responsive materials include polymer films containing cis-trans azobenzene switches [206]

and hydrogels based on spiropyran chemistry [207,208] or molecular motors [209,210].

We report here on the development of hydrogel–metal hybrid materials that are ac-

tuated by magnetic fields after exposure to light and also remain reconfigurable by light

to alter their magnetic response. This chapter starts with the design of a dual-responsive

hydrogel-metal hybrid capable of responding to both light and magnetic fields and ex-

perimental characterizations of the materials [Sec. 4.2]. In order to understand the

fundamental mechanisms of both light and magnetic responses, a continuum model of

the hydrogel-metal hybrid is systematically developed in Sec. 4.3 and corresponding

numeric implementation details are discussed in Sec. 4.4. With the understanding of

dual-responsiveness to light and magnetic fields [Sec. 4.5], the hydrogel-metal hybrid

can perform distinct tasks with remote control over geometry, sti↵ness, and magnetiza-

tion using a combination of light and magnetic fields. More specifically, the samples are
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prepared by incorporating aligned ferromagnetic nanowires into a photoactive hydrogel

matrix that is capable of changing shape in response to light. Macroscopic deformations

of the hydrogel upon light irradiation generate complex three-dimensional magnetization

profiles that lead to programmable actuation. These hydrogels can perform functions

such as walking [Sec. 4.6.1], steering [Sec. 4.6.2], climbing, and delivering cargo [Sec. 4.8]

under the control of an external magnetic field and light. Furthermore, small changes

in the chemical structure of these systems change the kinetics of light response and thus

provide access to a broader range of actuating behaviors [Sec 4.7]. Sec. 4.9 summarizes

the whole chapter and concludes with discussions and possible further development of the

hydrogel robots.

4.2. Design of the dual-responsive hydrogel-metal hybrid

4.2.1. Synthesis and characterizations

To synthesize the hydrogel–metal samples, nickel (Ni) nanowires were added to a solution

containing monomers, crosslinking agents, initiators and a polymerizable photo-switching

spiropyran monomer in order to create a light-responsive crosslinked network [Fig. 4.1A,

see [163] Fig. S2 and methods for synthetic details]. Under dark and acidic conditions,

the photoswitch contains a hydrophilic protonated merocyanine (MCH+) moiety that

isomerizes to a hydrophobic spiropyran (SP) form upon exposure to visible light. This

isomerization with light exposure results in contraction of the hydrogel due to dehydra-

tion, followed by expansion under dark conditions. The ferromagnetic nanowires were

aligned under a static magnetic field and then fixed in this configuration by free-radical

photopolymerization of the light-responsive hydrogel [Fig. 4.1A and B, also see [163] Figs.
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S3-4]. Small-angle X-ray scattering (SAXS) confirmed the alignment of the nanowires, as

shown by the radial integration of a 2D scattering intensity plot [Fig. 4.1C]. We measured

a remnant magnetization of 260 emu/cm3 parallel to the alignment of the nanowires and

the coercive magnetic field required to reverse the magnetization of the sample was found

to be 25 mT [Fig. 4.1D]. This is a 1.9-fold enhancement in the coercivity over bulk nickel

(13 mT) [211], highlighting the utility of the shape anisotropy derived from the nanowire

architecture (⇠8 µm long on average and 200 nm in diameter). In comparison, magneti-

zation loops measured perpendicular to the alignment direction were noisy and exhibited

a much lower magnetization, demonstrating the magnetic anisotropy of the composite

material. Samples containing randomly oriented Ni nanowires did not show any macro-

scopic magnetic anisotropy [see [163] Fig. S5]. Also, when spherical Ni nanoparticles

formed chained clusters during photopolymerization under a magnetic field, we did not

detect any anisotropy since each individual particle can rotate to align its magnetization

with the field [see [163] Fig. S6]. The magnetic anisotropy of the Ni nanowires was

also confirmed by superconducting quantum interference device (SQUID) magnetometry

with a rotating stage [see [163] Fig. S7]. This indicates that the shape of Ni nanowires

is a critical structural feature responsible for the anisotropic magnetic properties of the

Ni-hydrogel composites.

4.2.2. Response to light

The as-prepared hydrogel materials were soaked in acidic water for 40 min to obtain

an equilibrated swollen state prior to photo-actuation experiments in a large water bath

(⇠ 100 mL) that contained 5 mM HCl. Upon light exposure, this swollen state underwent
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a shrinkage to about 84% of its original volume. Since the actuation occurs in acidic water,

the SP1 hydrogel is capable of sequential actuation cycles that did not require additional

HCl preconditioning. We found that the flat hydrogel object bends towards the light

source upon irradiation from one side and recovers its original flat geometry in the dark.

This bending–flattening process is highly reversible, and the hydrogel could maintain its

photo-activity with the same maximum bending angle over at least ten cycles by switching

the light on and o↵ [see [163] Fig. S9].

4.2.3. Response to magnetic fields

Fig. 4.1E (left) shows the calculated water concentration gradient within a hydrogel slab

[Sec. 4.3.3] and also the resultant deformation after the light exposure. The deformed

light-induced bent geometry leads to a nonuniform 3D magnetization profile of the mag-

netic nanowires (indicated by the magenta arrows) with respect to the applied magnetic

field. This change enables the arch-shaped hydrogel to respond to a spatially uniform

external magnetic field Bext, but remains completely unresponsive in its flat state. Thus,

the span of the arch-shaped hydrogel can be increased or decreased by simply applying

a static magnetic field parallel or anti-parallel to the nanowires’ alignment direction [Fig.

4.1E, right].

4.3. Continuum model of the hydrogel-metal hybrid

In order to understand the fundamental mechanism of the dual-responsiveness of the

designed hydrogel-metal hybrid to both light and magnetic fields [Sec. 4.2 and Fig. 4.7 A-

C], a continuum model is developed systematically based on elasticity theory [Sec. 4.3.2],
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Figure 4.1. Hydrogels designed for coupled response to light and
magnetic fields. (A) Schematic showing Ni nanowires aligned and fixed
within a hydrogel network containing photoactive spiropyran moieties us-
ing a uniform magnetic field during free radical photopolymerization. (B)
Schematic representation of aligned Ni nanowires (grey) immobilized in a
hydrogel network (yellow). (C) Radial integration of 2D SAXS pattern (in-
set) revealing the macroscopic alignment of Ni nanowires within the hydro-
gel. (D) Magnetization loops parallel and perpendicular to the alignment
axis of the nanowires. (E) Finite element calculation of the water concentra-
tion gradient and deformation in a slab of hydrogel exposed to light (left);
finite element calculation of deformation as a result of magnetic field ex-
posure in a hydrogel slab previously bent by light (right). Magenta arrows
denote the magnetization of Ni nanowires; blue arrows indicate the direc-
tion of the external magnetic fields; dashed arrows represent the movement
of both ends after applying magnetic fields; rainbow surface colors represent
the deformations relative to its initial configurations (shaded regions).
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polymer physics [Sec. 4.3.3] and magnetism [Sec. 4.3.4] to quantitatively describe the

behaviors of the hydrogel-metal hybrid [Sec. 4.3.5].

4.3.1. Preliminaries of continuum mechanics

Here, some basic but essential concepts and terminologies related to continuum mechanics

will be briefly introduced as the preparation for the development of the continuum model

of the hydrogel-metal hybrid. Readers who are familiar with those concepts can skip to

Sec. 4.3.2 directly.

4.3.1.1. coordinate systems. In order to describe the motion and deformation of a

continuum body in a 3-dimensional space, two types of coordinate systems are commonly

employed [212]:

(1) Material coordinates

In this coordinate system, each material particles are explicitly tracked. All ma-

terial particles are labelled by upper case variables (X, Y, Z) in this work, which

are uniquely identified by its position in the given initial configuration. Material

coordinates are also called as Lagrangian coordinates or reference coordinates.

(2) Spatial coordinates

This is the physical space which contains the continuum body. In this work,

lower case variables (x, y, z) are used to describe positions in this space. In

this coordinate system, material particles constitute the continuum body are

not labelled but a fixed observation position in the space is labelled by (x, y, z).

Spatial coordinates are also called as Eulerian coordinates.
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By the definition, spatial coordinates and material coordinates coincide with each

other in the initial configuration, where displacements of each particles are zero. When the

continuum body deforms due to external or internal forces, each material particles keeps

its material coordinates but its spatial coordinates change with time and the following

relation holds:

(4.1) x = x(X, t) = X+ u(X, t)

where x and X are the coordinates in the deformed and reference configuration, respec-

tively; u is the displacement vector field, which connects the reference (undeformed)

configuration with present (deformed) configuration.

4.3.1.2. strains. With the coordinates system defined, we are ready to quantitatively

describe deformations of a continuum body. The first important quantity is the deforma-

tion gradient tensor F , which is defined as following:

(4.2) F =
@x

@X
= ru+ I

where I is the identity tensor and r is the gradient operator.

The deformation gradient tensor F is generally an asymmetric tensor, which maps ref-

erence configuration to present configuration. For example, it describes how an infinitesi-

mal line element is mapped from the reference configuration to the present configuration:

(4.3) dx =
@x

@X
dX = FdX
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Here, F contains complete information about the local stretching and rotation of the line

element. By right Polar Decomposition (PD) [213], the deformation gradient tensor F

can be decomposed as:

(4.4) F = RU

where R is an unitary tensor (det (R) = 1,R�1 = RT ) and U is the right stretch tensor,

which is positive-definite and symmetric. Right (Left) refers to the position of stretch

tensor U is on the right (left) side of unitary tensor R and only right case decomposition

will be shown here for illustration purpose.

Physically, R describes the rotation of system and all information about the deforma-

tion of the material is contained in the symmetric tensor U. Then, the change of length

of an infinitesimal line element is: dX · (F TFdX) � dX · dX = dX(F TF � I)dX, which

gives the natural definitions of some deformation measures shown below.

The right Cauchy-Green (C-G) deformation tensor C is defined as:

(4.5) C = F TF = U2

and the Green-Lagrange (G-L) strain tensor ✏ is defined as:

(4.6) ✏ =
1

2
(C � I) = 1

2
(F TF � I)

Plugging in the definition of the deformation gradient tensor [Eqn. 4.2], it gives that

(4.7) ✏ij =
1

2
(ui,j + uj,i + uk,iuk,j)
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The Einstein notation has been used, where repeated index means a summation over that

index and the index after comma indicates the derivative with respect to that index, i.e.

ui,j = rjui.

Both C and ✏ do not contain any information about rotation as F TF = UTRTRU =

U2. And the commonly used Engineering strain [212] is an approximation of the Green-

Lagrange strain tensor ✏ for small strains, i.e. ✏ij ⇡ 1

2
(ui,j + uj,i).

4.3.1.3. stresses. Strains describe the state of a continuum body and we also need cor-

responding quantities to describe external and internal forces acting on such a continuum

body, which are termed as stress tensors. The most well-known stress tensor is the Cauchy

stress tensor [214] �, which is defined as:

(4.8) � = lim
�S!0

�F

�S

where both the force �F and the area �S are expressed in the spatial coordinates.

However, it may or may not be convenient to measure forces and areas in the spatial

coordinates. Thus, there are first Piola-Kirchho↵ (P-K) stress tensor and second Piola-

Kirchho↵ (P-K) stress tensor:

(1) first P-K stress tensor P

The force �F is measured in the spatial coordinates but the area �S is measured

in the material coordinates. It’s usually an asymmetric tensor connecting the

spatial and material coordinates like the deformation gradient tensor F .

(2) second P-K stress tensor S

Both the force �F and area �S are measured in the material coordinates. Thus,
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it’s a symmetric tensor which resembles the Cauchy stress tensor � but defined

in the material coordinates instead.

All three stress tensors are related with each other via the deformation gradient tensor F :

(4.9) P = FS, � = J
�1PF T = J

�1FSF T

where J is the determinant of the deformation gradient tensor, i.e. J = detF . All three

stress tensors equivalently describe stresses applied on the continuum body in the view of

di↵erent coordinates. It’s important to note that the Cauchy stress tensor � and second

P-K stress tensor S are generally symmetric. This is a consequence of the conservation

of local angular momentum. Whenever the considered object has asymmetric active or

external stresses, all these stress tensors are not guaranteed to be symmetric.

4.3.1.4. equations of motion. With description of both strains and stresses of a con-

tinuum body, we are ready to connect them via the conservation of linear momentum

(second Newton’s law). The equations of motion (EOM) can be expressed in the material

frame:

(4.10) ⇢0
@
2u

@t2
= FV +rX · P

where ⇢0 is the density of material in the initial configuration, the volume force FV has

components in the present configuration but given with respect to the undeformed volume,

P is the first P-K stress tensor and the divergence operator r· is computed with respect

to material coordinates.
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Similarly, the EOM can also be expressed in the more familiar spatial coordinates:

(4.11) ⇢
@
2u

@t2
= fV +rx · �

where ⇢ is the density of material in the deformed configuration, the volume force fV has

components in the present configuration given with respect to the deformed volume, �

is the Cauchy stress tensor and the divergence operator r· is computed with respect to

spatial coordinates.

The EOM shown in 4.10 and 4.11 are termed as the strong form, which are elegant

in theory but are not friendly for numeric computation since it requires a certain level of

di↵erentiability of involved quantities. Another equivalent description of EOM is based

on the principle of virtual works [215], which states that the sum of the internal virtual

work and the external work are equal. The internal virtual work is the work done by

the current stress state on a variation in strains. The external virtual work is the work

done by all external forces with the variation in displacement fields corresponding to the

variation in strains. Mathematically, the virtual work �W can be written in the material

coordinates as:

(4.12) �W =

Z

V

(��✏ : S + �u · FV � ⇢0�u · utt) dv +

Z

@V

(�u · FS) ds

where � means the functional variation, : indicates double contraction between two ten-

sors, i.e. ✏ijSij, @V denotes the boundary of volume V and FS is the traction force at the

boundary given with respect to undeformed area. All integrals are taken with respect to

the undeformed configuration. Such integral description is termd as the weak form, which

is equivalent to the strong form shown in Eqn. 4.10 and commonly employed in numeric
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implementations [216].

4.3.1.5. material models. Only equations of motion (EOM) do not su�ciently define

the continuum mechanics problems. To form a closure of the system of equations, a con-

stitutive relation is necessary. Basically, a constitutive relation describes the responses

of materials with deformations, i.e. � = �(✏). Because such responses are material-

specific, di↵erent materials require di↵erent constitutive relations to describe their behav-

iors, which are so-called material models. This is the most empirical also the most diverse

part in the entire elasticity theory. There are many material models proposed for di↵erent

types of materials. For illustration purpose, the simplest one is for linear elastic solids:

(4.13) �ij = Eijkl✏kl

where E is a general fourth order elasticity tensor. For a homogeneous isotropic linear

elastic solids, the elasticity tensor can be reduced as two independent scalar elastic moduli

such as

(4.14) �ij = K�ij�kl +G(�ik�jl + �il�jk �
2

3
�ij�kl)

where K is the bulk modulus and G is the shear modulus.

If the material does not exhibit significant dissipation of elastic energy and history-

dependent behaviors, sometimes it’s more convenient to express the responses of materials

by a scalar elastic strain energy density Wel. This type of material models are called
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hyperelastic models, where stresses of the material are calculated as:

(4.15) � = 2
@Wel(✏)

@✏

For the case of linear elastic solids shown above, its equivalent constitutive relation ex-

pressed by an elastic strain energy density is:

(4.16) Wel(✏) =
1

2
Eijkl✏ij✏kl

4.3.2. Elastic model — the standard reinforced model

With relevant basic concepts of continuum mechanics introduced in previous section [Sec.

4.3.1], the goal of this section is to develop a suitable constitutive relation which describes

the elastic responses of the hydrogel-metal hybrid designed in Sec. 4.2. As a starting point,

there are several experimental observations would be helpful for selecting appropriate

material models:

(1) The deformations of hydrogel-metal hybrid is comparable to its thickness. This

suggests that elastic theory of infinitesimal small strains is not applicable. In-

stead, elastic theory of finite strains should be used.

(2) Because of the existence of aligned Ni nanowires [Fig. 4.1 A-C], elastic properties

of the hydrogel-metal hybrid are not isotropic. It suggests that at least one more

elastic parameter is needed to characterize the additional anisotropic response.

(3) The hydrogel-metal hybrid develops intrinsic curvatures with the application of

light [Fig. 4.1 E]. It suggests that the reference state of this elastic material is

coupled with the photo-sensitive chemical processes. However, experiments [163]
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show that changes of curvatures are relatively slow, which allow us to ignore

the time-dependence of reference state and treat the elastic and light responses

separately.

With all above considerations, the hyperelastic model [Sec. 4.3.1.5] is a good choice

for modeling the elastic responses of the hydrogel-metal hybrid. For hyperelastic mod-

els, elastic responses are defined by its elastic strain energy density Wel. Usually, the

Cauchy-Green deformation tensor C is used to describe the current state of elastic mate-

rials (Other strain measures are also applicable). So, the elastic strain energy density can

be expressed as a scalar function of the C-G deformation tensor, i.e. Wel = Wel(C).

4.3.2.1. isotropic materials. To illustrate the idea clearer, it’s helpful to consider a

hyperelastic model for isotropic materials [217] first. Due to the isotropy of the material,

the elastic strain energy density Wel should remain invariant under arbitrary rotations of

the material, i.e.

(4.17) Wel(C) = Wel(QCQ
T ), Q 2 SO(3)

where Q denotes a rotation matrix and SO(3) is the group of all rotations about the

origin of three-dimensional Euclidean space R3. Such symmetry condition requires that

the energy density function Wel must be a function of rotational invariants of C. Three

most commonly used independent rotational invariants of C-G tensor are:

(4.18) I1 = TrC, I2 =
1

2

⇥
(TrC)2 � Tr(C2)

⇤
, I3 = detC
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Sometimes, it’s convenient to splits the deformation gradient tensor F into the vol-

umetric and isochoric components, i.e. F = FvolFiso, where detFvol = detF = J and

detFiso = 1. Then, the isochoric deformation gradient tensor is Fiso = J
�1/3F and the

isochoric C-G strain tensor is Ciso = J
�2/3C, which give the corresponding isochoric ro-

tational invariants as:

(4.19) Ī1 = Tr(Ciso) = J
�2/3

I1, Ī2 = J
�4/3

I2, Ī3 = 1

Therefore, the elastic strain energy density for isotropic materials should be a function

of above three invariants:

(4.20) Wel = Wel(Ī1, Ī2, Ī3)

Above symmetry argument is not enough for determining the exact functional form

of the strain energy density. The next step is to get the functional form in terms of

these invariants [Eqn. 4.18], no matter by mathematical considerations (Mooney-Rivlin

model) or by experimental measurements (Yeoh and Ogden model). The simplest model

for hydrogels derived from its microscopic structure is the Neo-Hookean (N-H) model

[218,219]:

(4.21) Wel =
1

2
G(Ī1 � 3) +

1

2
K(J � 1)2

where G is the shear modulus and K is the bulk modulus. The shear modulus G can be

connected with properties of hydrogels by G = NkBT , where N is the number of polymer

chains per unit volume, kB is the Boltzmann constant and T is the temperature. Please



ar
ch
iv
e

148

be aware that the above model is only valid for nearly-incompressible materials and the

e↵ect of entropy need to be included for compressible hydrogels [220].

4.3.2.2. transversely isotropic materials. Next, let’s consider isotropic materials

with embedded aligned micro-fibers [Fig. 4.1]. Obviously, such materials have less sym-

metry comparing with fully isotropic materials. The alignment direction of micro-fibers

define a local direction, which is denoted as a. Then, the state of system is fully described

by C-G deformation tensor C and fibers alignment direction vector a and the elastic strain

energy density should be a function of both, i.e. Wel = Wel(C, a).

Although the existence of fibers breaks the isotropy of materials, materials are still

isotropic perpendicular to the fibers’ direction or transversely isotropic for short. The

elastic strain energy Wel should be invariant for arbitrary rotations around fibers’ direc-

tion:

(4.22) Wel(C, a) = Wel(QCQ
T
,Qa), Q 2 SO(2)⌦ a

where Q denotes a rotation matrix and SO(2) is the group of all rotations about the

origin of two-dimensional Euclidean space R2. SO(2)⌦a denotes all rotations around the

axis defined by a. Mathematically, besides the three rotational invariants defined for fully

isotropic case [Eqn. 4.18], there are two more independent rotational invariants can be

constructed [221] and their command choices are:

(4.23) I4 = a · (Ca), I5 = a · (C2a)
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And corresponding isochoric invariants can be similarly defined [Eqn. 4.19]:

(4.24) Ī4 = J
�2/3

I4, Ī5 = J
�4/3

I5

Thus, the general form of elastic strain energy density for a transversely isotropic

material can be written as:

(4.25) Wel = Wel(Ī1, Ī2, Ī3, Ī4, Ī5)

It’s pretty complicated to include all possible invariants and determine the exact func-

tional form of Wel. Fortunately, previous works [221] show that not all of these invariants

are equally important to capture essential behaviors of fiber-reinforced materials. The

simplest one is the so-called standard reinforcement model [221]:

(4.26) Wel =
1

2
G(Ī1 � 3) +

1

2
�G(Ī4 � 1)2 +

K

2
(J � 1)2

where � is a parameter which reflects sti↵ness caused by aligned fibers. This model is

almost the same as the N-H model [Eqn. 4.21] except one additional term (second term)

which describes the anisotropic elastic responses of such transversely isotropic materials.

4.3.3. Light-responsive hydrogel model

In addition to the pure elastic responses [Sec. 4.3.2], the underlying elastic medium of

the designed hydrogel-metal hybrid [Sec. 4.2] is a light-responsive hydrogel [Fig. 4.1 A].

In order to describe its light-induced deformation, appropriate light-response model is

needed.
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4.3.3.1. Photochemistry. Upon light radiation, the spiropyran chromophores grafted

on the polymer chains of the hydrogels undergo a chemical reaction from hydrophilic

protonated merocyanine (MCH+) form to hydrophobic spiropyran (SP) form:

light
dark

Figure 4.2. Photochemical reaction of spiropyran chromophores, whose hy-
drophilic protonated merocyanine (MCH+) form converts to hydrophobic
spiropyran (SP) form upon the light radiation. And such photochemical
reaction can be reversed in the dark condition.

The reaction rate equation of above photochemical reaction can be expressed:

(4.27)
@rsp

@t
= k+(I)rmch+ � k�rsp

where rsp and rmch+ are the fractions of chromophores in SP and MCH+, respectively.

k+ and k� are the forward and backward reaction rate constant. More specifically, k�

refers to the ring-opening process, which is usually a constant value at a given substituent,

temperature and pH [222]; While k+ refers to the ring-closing process, which is dependent

on the incident light intensity I. For an unidirectional and monochromatic light source

of angular frequency !, the light intensity dependence of k+ can be written as [223]:

(4.28) k+ =
 !,mch+

~! ✏!,mch+I
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where  !,mch+ and ✏!,mch+ are the quantum yield (number of reactions per photon) and

molar absorptivity of the MCH+ chromophore, respectively. ~ is the reduced Planck con-

stant. For the steady state (@rsp
@t

= 0), the equilibrium concentration of SP chromophores

is

(4.29) rsp =
k+(I)

k+(I) + k�

4.3.3.2. light propagation. As light propagates across a medium, the light can be

absorbed, scattered and di↵racted , etc., which generally results in a reduction of light

intensity. Here, the Beer–Lambert (B-L) law is employed to describe the attenuation

of light and the light intensity distribution for a monochromatic light traveling along

z-direction is given by:

(4.30)
dI(z)

dz
+ k!I = 0

where k! denotes the overall light absorption coe�cient. The decay of the light intensity

in a photo-responsive hydrogel results from two major contributions [223]: the absorption

of light by the photochemical reaction and the absorption of light by the hydrogel’ polymer

matrix. Then, the overall light absorption coe�cient can therefore be expressed as:

(4.31) k! =
kgel

J
+ k!,sp

where kgel denotes the absorption of light by the dry polymer matrix, which is rescaled

by J (= detF ) due to the volumetric changes; k!,sp is the absorption of light due to the
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SP photochemical reaction, which depends on the concentration of MCH+ chromophores:

(4.32) k!,sp = ✏!,mch+rmch+

✓
f�

VmNA

◆

where � is the volume fraction and f is the fraction of monomers containing a chro-

mophore; V m is the volume of a chromophore; NA is the Avogadro constant.

4.3.3.3. light-responsive hydrogel. Comparing with a usual elastic materials described

in Sec. 4.3.2, a hydrogel has additional contributions in two primary aspects:

(1) A hydrogel is basically a network of polymer chains, which interaction with en-

vironmental solvent molecules;

(2) The chromophore molecules grafted on the hydrogel provide its light responsive-

ness, which also modifies the hydrophobicity of polymer chains (MCH+$SP)

with surrounding solvent molecules.

The Flory–Huggins (F-H) model [219,224–226] provides a description of interaction

energy of a hydrogel with its surrounding solvents molecules as:

(4.33) Umix =
kBT

Vm

[(1� �) ln(1� �) + ��(1� �)]

where � describes the interaction between hydrogel monomers and solvent molecules, V m

is the volume of the hydrogel monomer, � is the volume fraction, kB is the Boltzmann

constant and T is the temperature.

As for the energy contribution due to the chromophores, a simple model similar to the

F-H model is proposed, which express the additional contribution due to the hydrogel’s
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interaction with light as:

(4.34) Uphoto =
zf

Vm

rsp(usw � umw)�(1� �)

where usp and umw denotes the interaction energy of SP and MCH+ with solvent molecules,

respectively; z is a parameter (coordinate number, which is 6 in 3D) of the F-H model.

Finally, both interaction energies Umix and Uphoto can be rescaled by its volume

fraction � which yields the corresponding energy densities as Wmixing = Umix/� and

Wphoto = Uphoto/�. Combining with the passive elastic energy density Wel [Eqn. 4.26], it

provides a theoretical description of the light-responsive hydrogel within the framework

of hyperelastic model [Sec. 4.3.1.5] as:

(4.35) Wgel = Wel +Wmix +Wphoto

4.3.4. Magnetic model — the ideal hard magnet

Besides its elastic responses [Sec. 4.3.2] and light responses [Sec. 4.3.3], another constitu-

tive relation is needed to describe its magnetic responses because of the dual responsive-

ness of the hydrogel-metal hybrid [Fig. 4.1]. The Ni nanowires embedded in the hydrogel

interacts with magnetic fields imposed by an external magnet. As the time-varying e↵ects

are negligible and no free-currents exist in the experimental setup, the Maxwell’s equations

for the magnetostatics [129] is su�cient to describe the relevant magnetic phenomena:

(4.36)

8
>><

>>:

r⇥H = 0

r ·B = 0
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whereH is the magnetic field strength andB is the magnetic flux density. As the magnetic

field strength H is curl-free, a magnetic scalar potential 'm can be introduced:

(4.37) H = �r'm +Hb

where the background magnetic field Hb is explicitly split out for convenience. The above

equation automatically satisfies the curl-free condition and the problem reduced to solve

for a scalar potential function analogous to the electrostatics problems.

Similar to elastic problems [Sec. 4.3.1.5], a material model B = B(H) is needed to

complete the system of equations for magnetostatics. The magnetic hysteresis curve of Ni

nanowires is measured in experiments [Fig. 4.3], which gives the relationship between B

and H. Since the imposed external magnetic field strength is relatively weak ( 16 mT),

the magnetic responses of Ni nanowires stay in the linear response regime (red dash line

in Fig. 4.3) and can be treat as ideal hard magnets for simplicity, i.e.

(4.38) B = µrµ0 (H+M0)

where µr is the relative magnetic permeability of Ni nanowires, µ0 is the absolute magnetic

permeability of vacuum and M0 is the residual magnetization. Please be aware that µrµ0

should choose the magnetic permeability of Ni nanowires (⇠ 3.58 ⇥ 10�5 H/m [163])

only if the whole composite consists of pure Ni nanowires. However, in the design of

our hydrogel-metal hybrid, the weight percent of Ni nanowires is only about 0.5% and

most content is essentially water, which is non-magnetizable. Therefore, the magnetic

permeability of the hydrogel-metal hybrid should be close to vacuum, i.e. µr⇠ 1.
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Figure 4.3. Hysteresis curve parallel to the alignment of Ni nanowires (blue
cross). A linear fitting is shown by red line within the operational range
(between two vertical red lines) of the magnetic field strength.

4.3.5. Magnetoelastic model

So far, both elastic and magnetic responses of the hydrogel-metal hybrid [Sec. 4.3.2 and

4.3.4] have been treat separately. However, apparently, there exists coupling between elas-

tic and magnetic responses. The magnetization of Ni nanowires interacts with magnetic

fieldsB, which creates magnetic torques on the nanowires. Because the nanowires are fixed

within the hydrogel, these magnetic torques cause elastic stresses on the hydrogel matrix
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and result in macroscopic deformations. To include the coupling between magnetism and

elasticity, it’s tempting to simply add the magnetic fields dependence into the elastic en-

ergy, i.e. Wel = Wel(C, a,B) and construct invariants [227] following previous symmetry

arguments [Sec. 4.3.2]. However, it’s important to notice that the hydrogel-metal hybrid

under an external magnetic field is not even transversely isotropic as the magnetic exter-

nal field defines another preferred direction, which further reduces the symmetry of the

whole system. It clearly that the hydrogel-metal hybrid has di↵erent energies when the

external magnetic field is imposed in di↵erent directions. In other words, unlike the pure

elastic strain free energy Wel [Eqn. 4.26], the total magnetoelastic energy of the system is

orientation dependent, which implies that the C-G deformation tensor C is not su�cient

for fully characterizing the current state of the system because C does not contain any

information about rotation [Sec. 4.3.1.2]. In order to preserve orientational information

of the system, a more fundamental strain measure quantity (C = F TF ), the deformation

gradient tensor F , should be used instead. It suggests that the additional magnetic en-

ergy density function Wm should be a function of the deformation gradient tensor F and

magnetic flux density B (or magnetic field strength H), i.e. Wm = Wm(F ,B).

We assume that Ni nanowires move with the hydrogel matrix without slipping. Then,

the magnetization in the deformed configuration is FM/J , where M denotes the magneti-

zation in the reference configuration. Ignoring the higher order energy contributions from

M and B, the magnetic energy density in the deformed configuration can be written as

� (FM/J) ·B. Therefore, the magnetic energy density Wm in the reference configuration
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can be expressed as:

(4.39) Wm = �J(FM/J) ·B = �FM ·B

Adding the elastic energy density [Eqn. 4.26] and the magnetic energy density [Eqn.

4.39] together, the total magnetoelastic energy density Wme can be written as:

(4.40) Wme =
1

2
G(Ī1 � 3) +

1

2
�G(Ī4 � 1)2 +

K

2
(J � 1)2 � FM ·B

This magnetoelastic energy density function defines the constitutive relation of the

fiber-reinforced magnetoelastic materials, which can be shown explicitly by calculating

corresponding stresses.

4.3.5.1. elastic stresses. For calculating elastic stresses, it’s convenient to split elastic

energy density function Wel into volumetric and isochoric parts for nearly-impressible

materials:

(4.41) Wel = W iso

el
+Wvol

el

where the isochoric and volumetric elastic strain energy density are defined as

(4.42) Wiso =
1

2
G(Ī1 � 3) +

1

2
�G(Ī4 � 1)2, Wvol =

1

2
K(J � 1)2
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Then, the second P-K elastic stress tensor is calculated by taking derivatives with respect

to the C-G strain tensor:

(4.43) Sel = 2
@Wel

@C
= 2

@W iso

el

@Ī1

@Ī1

@C
+ 2

@W iso

el

@Ī4

@Ī4

@C
+ 2

@Wvol

@J

@J

@C

The derivatives of energy density functions with respect to the isochoric invariants are

straightforward to compute:

(4.44)
@W iso

el

@Ī1

=
1

2
G,

@W iso

el

@Ī4

= �G(Ī4 � 1),
@Wvol

el

@J
= K(J � 1)

By the chain rules, the derivatives of the isochoric invariants [Eqn. 4.19] with respect to

the C-G strain tensor are:

(4.45)

@Ī1

@C
=
@(J�2/3

I1)

@C
= �2

3
J
�5/3

@J

@C
I1 + J

�2/3
@I1

@C

@Ī4

@C
=
@(J�2/3

I4)

@C
= �2

3
J
�5/3

@J

@C
I4 + J

�2/3
@I4

@C

@J

@C
=
@I3

@C
=
@ detC

@C

It still needs derivatives of invariants [Eqn. 4.18] with respect to the C-G strain tensor:

(4.46)
@I1

@C
=
@CKK

@CIJ

= I,
@I4

@C
=
@CKLaKaL

@CIJ

= a⌦ a

The derivative of J with respect to C is more di�cult to calculate as the determinant

operator is a nonlinear function. By using the linearization of the determinant of a

tensor [228], it gives that:

(4.47)
@I3

@C
=
@ detC

@C
=

1

2
JC�1
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Finally, combining all intermediate results together and plugging back into Eqn. 4.43

yields the second P-K elastic stress tensor as

(4.48)

Sel = GJ
�2/3

✓
�C : I

3
C�1 + I

◆
+K(J � 1)JC�1

+ 2�GJ
�2/3 (C : a⌦ a� 1)

✓
�C : a⌦ a

3
C�1 + a⌦ a

◆

where : and ⌦ denote double contraction and dyadic product, respectively.

It’s more useful to convert the second P-K stress tensor as the Cauchy stress tensor

[Eqn. 4.9], i.e.

(4.49)

�el = J
�1FSelF

T

= GJ
�5/3


�C : I

3
I + FF T

�
+K(J � 1)I

+ 2�GJ
�5/3 (C : a⌦ a� 1)


�C : a⌦ a

3
I + F (a⌦ a)F T

�

which gives the elastic stresses of fiber-reinforced materials in the spatial coordinates.

4.3.5.2. magnetic stresses. Due to the magnetoelastic coupling, the magnetic energy

Wm also creates stresses. Based on the work-conjugation [228], the conjugate variable

[229] of the deformation gradient tensor F is the first P-K stress tensor, i.e.

(4.50) Pm =
@Wm

@F
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Note the relation between the first P-K stress tensor and the Cauchy stress tensor [Eqn.

4.9], it gives the magnetic stress tensor as

(4.51)

�m =
1

J

@Wm

@F
F T = �J

�1
@ (FM ·B)

@F
F T

= �J
�1
@(FkLMLBk)

@FiN

FNj = �J
�1
�ik�NLMLBkFNj = �J

�1
FNjMNBi

= �J
�1B⌦ FM

Unlike the Cauchy elastic stress tensor �el [Eqn. 4.49], the Cauchy magnetic stress tensor

�m is usually asymmetric, which leads to local magnetic torques ⌧m = J
�1(FM) ⇥ B.

This point will be discussed in more details in Sec. 4.4.3.3.

4.3.5.3. constitutive relation of magnetoelastic materials. Finally, adding the

elastic stresses [Eqn. 4.49] and the magnetic stresses [Eqn. 4.51] together, the constitu-

tive relation of the fiber-reinforced magnetoelastic materials defined by the magnetoelastic

energy density Wme [Eqn. 4.40] can be expressed as:

(4.52) �me = �me(F ) = �el(C) + �m(F )

This concludes the development of the material model of the hydrogel-metal hybrid and

details of numeric implementations will be discussed in the next section.

4.4. Finite element simulations

4.4.1. Overview of numeric implementations

The continuum model of the hydrogel-metal hybrid was solved in two steps using the

commercial finite-element software COMSOL. The first step calculates the deformation
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of the hydrogel under the influence of light and the second step uses the deformed geom-

etry as the reference configuration to calculate the dynamic behavior of the robot under

an external magnetic field. For the first step, we used the solid mechanics module of

COMSOL and modeled the hydrogel as a hyperelastic material to calculate its response

to light. Since the photo component of the free energy density of the material depends on

the concentration of chromophores in the SP form [Eqn. 4.34], the general form partial

di↵erential equations (PDE) module of COMSOL was also used to calculate the light

intensity [Eqn. 4.30] and hence the concentration of SP chromophores [Eqn. 4.29] in the

bulk of the material. For the second part of the simulation, the magnetic field [Eqn. 4.37

and 4.38] was solved via the AC/DC module of COMSOL. The model developed for the

fiber-reinforced magnetoelastic materials [Eqn. 4.40] was implemented as a user-defined

hyperelastic model in the Structural Mechanics module of COMSOL. The contribution

from asymmetric magnetic Cauchy stress tensor �m [Eqn. 4.51 and 4.62] was implemented

via the weak contribution functionality of COMSOL. The contacts between the hydrogel

robot and the floor are assumed to be non-slippery and the contact events are detected via

the Events module of COMSOL, which triggers time-dependent non-slippery boundary

conditions. Besides, both volumetric gravitational and frictional forces were also added

into the continuum model to take into account the e↵ect of gravity and the viscosity of

the liquid environment, respectively.

4.4.2. Magnetism related simulation details

Solving the governing equations of magnetostatics [Eqn. 4.36] together with the mag-

netic constitutive relation [Eqn. 4.38] gives the distribution of overall magnetic fields B.
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It’s rather cumbersome to impose a rotating external magnetic field via time-dependent

boundary conditions and the AC/DC module of COMSOL supports solving magneto-

static problems by splitting out the background magnetic field as shown in Eqn. 4.37.

Thus, a rotating external magnetic field in the y-z plane Hb can be imposed by simply

setting Hb = H0(0, cos(2⇡ft), sin(2⇡ft)), where H0 is the field strength and f is the field

frequency.

In this work, the magnetization profile is usually modulated by a preceding light-

actuation process [Fig. 4.7 (A) and (B)], which results in a non-uniform position-dependent

distribution of magnetization, i.e. M0 = M0(X). Therefore, the magnetization profile is

obtained from the final state of the light-actuation simulation [Sec. 4.3.3], which starts

from a flat uniform magnetization profile, and serves as an input to the magnetic material

model [Eqn. 4.38].

Another side note is the magnetic scalar potential 'm permits arbitrary shifts by a

constant value [Eqn. 4.37]. Therefore, to ensure the convergence of magnetic simula-

tions, it’s important to impose additional constraints to provide a reference point for the

magnetic scalar potential.

4.4.3. Elasticity related simulation details

In principle, solving the governing equations of elasticity [Eqn. 4.11] together with the

material model [Eqn. 4.52] yields the elastic deformations of the materials u. However,

di�culties arise as the hyperelastic model implemented in COMSOL only supports tak-

ing derivatives of energy density with respect to the symmetric C-G strain tensor C but

the magnetoelastic energy density Wme depends on the asymmetric deformation gradient



ar
ch
iv
e

163

tensor F . The Cauchy stress tensor in the Structural Mechanics module of COMSOL is

internally assummed to be symmetric. As a workaround, the elastic energy density Wel

[Eqn. 4.26], which only depends on the C-G strain tensor, can still be implemented via

the built-in hyperelastic model provided by COMSOL but the magnetic energy density

Wm [Eqn. 4.39] is included separately via the weak form contribution.

4.4.3.1. weak form in terms of the deformation gradient tensor. It’s important

to notice that the usual weak form of EOM [Eqn. 4.12] assumes stress tensors to be

symmetric during the derivation [215], which is invalid for the magnetic stress tensors

[Eqn. 4.51]. Besides, the weak form in terms of the G-L strain tensor ✏ cannot capture the

rotational motion of the system. This point can be illustrated by considering a rigid body

rotation of whole system, in which case strain tensor of system is unchanged and gives

that �✏ = 0. Therefore, to properly compute the stresses due to the magnetic energy,

the weak form expression must be able to capture rotational variations of displacement

vector fields. This motivates re-expressing the strong form of EOM in terms of the first

P-K stress tensor P :

(4.53) ⇢0ui,tt = FV i + PiJ,J
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and the corresponding weak form can be derived as:

(4.54)Z

V

(FV i + PiJ,J � ⇢0ui,tt)�uidv =

Z

V

(FV i � ⇢0ui,tt)uidv +

Z

V

PiJ,J�uidv

=

Z

V

(FV i � ⇢0ui,tt)uidv +

Z

V

[(PiJ�ui),J � PiJ�ui,j] dv

=

Z

V

(�PiJ�ui,j + FV i�ui � ⇢0ui,tt�ui)dv +

Z

@V

PiJ�uiNjds

=

Z

V

(�PiJ�ui,j + FV i�ui � ⇢0ui,tt�ui)dv +

Z

@V

FSi�uids

Symmetry properties of the stress tensors are not needed to derive the above result.

Therefore, such formulation is compatible with asymmetric stress tensors and it can be

written in vectorial notation as:

(4.55) �W =

Z

V

(��F : P + �u · FV � ⇢0�u · utt) dv +

Z

@V

(�u · FS) ds

Since deformation gradient tensor contains information about rotation, the weak form

shown in Eqn. 4.55 can capture energy variations caused by rotational motions.

4.4.3.2. torque balance. The strong form [Eqn. 4.53] and weak form [Eqn. 4.55] ex-

pression of EOM compatible with asymmetric stress tensors have been derived in previous

section. However, besides the conservation of linear momentum, the conservation of an-

gular momentum also need to be satisfied. For the case without external torques, local

torque balance is automatically fulfilled as long as the stress tensor is symmetric [212],

i.e. �ij = �ji. For our case, the system has magnetization in the deformed configuration

as J�1FM, which exert an additional magnetic torque:

(4.56) ⌧m = J
�1(FM)⇥B
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The existence of local magnetic torque is reflected by the fact that the magnetic stress

tensor �m [Eqn. 4.51] is no longer symmetric, i.e. �m

ij
6= �

m

ji
. However, the overall torque

balance of the system still holds as the consequence of the conservation of linear angular

momentum, i.e.

(4.57)

Z

@V

r⇥Ttotds+

Z

V

r⇥ fV dv +

Z

V

r⇥
✓
�⇢@

2u

@t2

◆
=

Z

V

⌧mdv

where Ttot denotes the total traction force (from both elastic and magnetic stresses) at

the boundary @V and r is the position vector is defined relative to any arbitrary reference

point chose for the torque calculations. The above torque balance can be directly verified

as:

(4.58)

Z

@V

✏ijkrjT
tot

k
ds+

Z

V

✏ijkrjfV kdv +

Z

V

✏ijkrj(�⇢uk,tt)

=

Z

@V

✏ijkrj(�
el

kl
+ �

m

kl
)nlds+

Z

V

✏ijkrj(fV k � ⇢uk,tt)dv

=

Z

V

⇥
✏ijkrj(�

el

kl
+ �

m

kl
)
⇤
,l
dv +

Z

V

✏ijkrj(fV k � ⇢uk,tt)dv

=

Z

V

✏ijkrj,l(�
el

kl
+ �

m

kl
)dv +

Z

V

✏ijkrj(�
el

kl,l
+ �

m

kl,l
)dv +

Z

V

✏ijkrj(fV k � ⇢uk,tt)dv

=

Z

V

✏ijkrj,l�
m

kl
dv +

Z

V

✏ijkrj,l�
el

kl
dv +

Z

V

✏ijkrj[fV k � ⇢uk,tt + (�el

kl
+ �

m

kl
),l]dv

=

Z

V

✏ijk�jl�
m

kl
dv +

Z

V

✏ijk�jl�
el

kl
dv =

Z

V

✏ijk�
m

kj
dv +

Z

V

✏ijk�
el

kj
dv

=

Z

V

✏ijk�
m

kj
dv =

Z

V

✏ijk(�J
�1
BkFjKMK)dv =

Z

V

✏ijk

�
J
�1
FjKMK

�
Bkdv

where the EOM and the symmetric property of elastic stress tensor (�el

ij
= �

el

ji
) have been

applied. As the conservation of angular momentum is automatically fulfilled [Eqn. 4.57],
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only the EOM shown in Eqn. 4.55 need to be solved.

4.4.3.3. explicit expressions of magnetic stresses. As shown by the weak form

EOM [Eqn. 4.55], the energy variations due to the magnetic stresses can be computed as:

(4.59) �Wm =

Z

V

��F : Pmdv

The Cauchy magnetic stress tensor is given by Eqn. 4.51 and also note the transformation

relation [Eqn. 4.9], then the first P-K magnetic stress tensor is:

(4.60) Pm = J�mF
�T

or explicitly written in its component wise form:

(4.61) Pm =

0

BBBB@

PxX PxY PxZ

PyX PyY PyZ

PzX PzY PzZ

1

CCCCA
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where

(4.62)

PxX = FxY FyZ �
m

xz
� FxZ FyY �

m

xz
� FxY FzZ �

m

xy
+ FxZ FzY �

m

xy
+ FyY FzZ �

m

xx
� FyZ FzY �

m

xx

PxY = FxZ FyX �
m

xz
� FxX FyZ �

m

xz
+ FxX FzZ �

m

xy
� FxZ FzX �

m

xy
� FyX FzZ �

m

xx
+ FyZ FzX �

m

xx

PxZ = FxX FyY �
m

xz
� FxY FyX �

m

xz
� FxX FzY �

m

xy
+ FxY FzX �

m

xy
+ FyX FzY �

m

xx
� FyY FzX �

m

xx

PY x = FxY FyZ �
m

yz
� FxZ FyY �

m

yz
� FxY FzZ �

m

yy
+ FxZ FzY �

m

yy
+ FyY FzZ �

m

yx
� FyZ FzY �

m

yx
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m
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m
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+ FxX FzZ �

m
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� FxZ FzX �
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� FxX FzY �

m
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+ FyX FzY �
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� FyY FzX �
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PzX = FxY FyZ �
m

zz
� FxZ FyY �

m

zz
� FxY FzZ �

m

zy
+ FxZ FzY �

m

zy
+ FyY FzZ �

m

zx
� FyZ FzY �

m

zx

PzY = FxZ FyX �
m

zz
� FxX FyZ �

m

zz
+ FxX FzZ �

m

zy
� FxZ FzX �

m

zy
� FyX FzZ �

m

zx
+ FyZ FzX �

m

zx

PzZ = FxX FyY �
m

zz
� FxY FyX �

m

zz
� FxX FzY �

m

zy
+ FxY FzX �

m

zy
+ FyX FzY �

m

zx
� FyY FzX �

m

zx

These explicit expressions are recorded only because COMSOL does not support matrix

operations for the version I was working with (version 5.3) and it’s recommended to

generate those expressions via any popular Symbolic Algebra System (SAS) (such as

MATLAB or Mathematica) to avoid mistakes.

4.4.3.4. weak contributions. Finally, the weak-form EOM for the magnetoelastic ma-

terials can be written explicitly as:

(4.63) �W =

Z

V

(��F : Pm � �✏ : Sel + �u · FV � ⇢0�u · utt) dv +

Z

@V

(�u · FS) ds
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The elastic stresses are implemented as a user-defined hyperelastic model with energy

density function given by Eqn. 4.26 and the magnetic stresses are implemented as addi-

tional external stresses whose expressions are explicitly computed via Eqn. 4.62. Common

FEM software (such as COMSOL and FEniCSx) all support input of the weak-form equa-

tions. But di↵erent software use di↵erent terminologies. In COMSOL, the built-in test()

function servers as the role of functional variation operator � in Eqn. 4.63 and the de-

formation gradient tensor F is readily available as internal variables in the Structural

Mechanics module. Therefore, after the computation of first P-K magnetic stress tensor

Pm, the contribution due to magnetic stresses can be straightforwardly implemented as

(4.64) �Wm = �
Z

V

X

i=x,y,z

X

J=X,Y,Z

test (FiJ)P
m

iJ
dv

via the weak contribution functionality of COMSOL.

4.4.3.5. Contact boundary conditions. For a complete dynamic simulation of the

whole robotic behaviors (such as walking/steering motions), the mechanical contacts be-

tween the hydrogel robot and the support glass floor are necessary modeling ingredients

and need extra cautions. The complete analysis of the contacts, in principle, requires the

simulation model to include corresponding mechanical frictions and contact pressures at

the contact locations. This needs a separate friction model, which is still largely empirical

and generally di�cult to integrate into the FEM simulation. In order to capture the essen-

tial physics without introducing too much technical complexities, we assume all contacts

are non-slippery during walking. Specifically, it means that once a leg of the hydrogel

robot lands on the floor, the landed leg is not allowed to have translational displacement.

However, rotational movement around the center of the landed leg is allowed to give its
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steering capability. Besides, we assume all contacts are perfectly inelastic collisions, which

means that the kinetic energy of the hydrogel robot gets dissipated immediately when a

leg lands on the ground.

With above assumptions, we track the positions of each legs of the hydrogel robot

during the time-dependent simulation and trigger a contact event once any leg hits the

floor. For each contact event, the boundary condition of the landed leg is switched as a

fixed boundary condition. At the same time, the boundary condition of the other leg is

switched as a free boundary condition. The kinetic energy of the hydrogel robot is also

dissipated completely during each contact events. This contact event-driven boundary

condition allows us to recover the dynamic behaviors of the hydrogel robots observed in

the experiment and quantitatively study possible robotic functions of the hydrogel robots.

4.4.4. Benchmark with analytic solutions

In order to confirm the numerical model is implemented correctly, it’s important to bench-

mark FEM solution with available analytic solutions. Here, the analytic solutions of mag-

netoelastic materials of a simple cube geometry under uniaxial stretch or compression are

derived to serve as a test example.

For simplicity, the external magnetic field Hb, the direction of embedded fibers a

and the residual magnetization M0 are all assumed to be uniformly distributed along z-

direction. All elastic deformations should be along each axes in such setup and three prin-

cipal stretches are denoted as �x, �y and �z. Due to the symmetry of the problem setup,

it requires that �x = �y. Besides, the materials are assumed to be nearly-impressible

such that J = �x�y�z = 1, then the deformation gradient tensor has the following simple
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diagonal form:

(4.65) F =

0

BBBB@

�
�1/2

z 0 0

0 �
�1/2

z 0

0 0 �z

1

CCCCA

and also note that

(4.66) C = F TF =

0

BBBB@

�
�1

z
0 0

0 �
�1

z
0

0 0 �
2

z

1

CCCCA
, a =

0

BBBB@

0

0

1

1

CCCCA
, M = M0

0

BBBB@

0

0

1

1

CCCCA
, B = Bext

0

BBBB@

0

0

1

1

CCCCA

where M0 is the magnitude of the residual magnetization and Bext denotes the external

magnetic flux density.

Plugging above expressions into the stress tensors [Eqn. 4.49, 4.51 and 4.52], it gives

the magnetoelastic stress tensor as:

(4.67)

�me = G


��

2

z
+ 2��1

z

3
I + FF T

�
+ 2�G

�
�
2

z
� 1

� 
��

2

z

3
I + F (a⌦ a)F T

�
� pI �B⌦ FM

where the volumetric pressure p is defined as:

(4.68) p = �K(J � 1)

In the component form, it gives that

(4.69a) �
me

xx
= �

me

yy
=

1

3
G(��1

z
� �

2

z
)� 2

3
�G�

2

z
(�2

z
� 1)� p
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A B

Figure 4.4. Uniaxial stretch (A, �z = 1.5) and compression (B, �z = 0.5)
of a magnetoelastic cube under external magnetic fields. The residual mag-
netization (not shown), direction of embedded fibers (not shown) and the
external magnetic field are uniformly distributed along the z-axis. The
cubic outlines indicate the initial shape and only an octant is shown for
simplicity.

(4.69b) �
me

zz
=

2

3
G(�2

z
� �

�1

z
) +

4

3
�G�

2

z
(�2

z
� 1)� p� BextM0�z

The traction-free boundary condition requires that

(4.70) �
me

xx
= �

me

yy
= �

me

zz
= 0

Therefore, the deformation of a magnetoelastic cube under external magnetic fields is

given as:

(4.71) (�z � �
�2

z
) + 2��z(�

2

z
� 1) =

BextM0

G
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For a given set of material parameters (G, �, M0) and experiment conditions (Bext),

above nonlinear dimensionless equation can be solved to obtain the induced stretch or

compression (�z). As indicated by the above equation, �z only depends on two dimen-

sionless parameters � and BextM0
G

, which is plotted solid lines in Fig. 4.5. Corresponding

FEM simulation is set up with K � G to ensure the incompressibility of the materials.

Simulation results are marked as cross symbols in Fig. 4.5, and they match consistently

with analytic solutions, which validate numeric implementations of the continuum model

of fiber-reinforced magnetoelastic materials.

4.4.5. Calibration of parameters

After validating numeric implementations of the material model, all material parameters

(G, K, �, M) [see Eqn. 4.40] need to be calibrated from actual experiment measurements.

For magnetic properties, the magnetization is obtain via SQUID measurement [163]. As

for elastic properties, Dynamic Mechanical Analysis (DMA) is conducted to characterize

the elastic responses of the materials via a uniaxial compression. Then, the calibration

process is done by the reverse modeling and implemented via the Optimization module

in COMSOL. More specifically, the calibration process is formulated as an optimization

problem to find elastic parameters matching experimental results best, where the objec-

tive function and the optimization solver are chosen as least square function and Sparse

Nonlinear OPTimizer (SNOPT), respectively.

For the calibration purpose, identical circular samples with the diameter of 8 mm

and thickness of 0.536 mm are cut by mold for uniaxial compression test. The nominal

stresses of samples without Ni nanowires (control sample), samples with Ni nanowires
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Figure 4.5. Comparison between the numeric solutions (cross symbols) and
the corresponding analytic solutions (solid lines) of the fiber-reinforced mag-
netoelastic materials with a simple cubic geometry.

aligned perpendicular to bottom surface (perpendicular sample) and samples with Ni

nanowires aligned parallel to bottom surface (parallel sample) are measured with respect

to the strain, which are shown as cross symbols in Fig. 4.6.

For the control sample, corresponding continuum model reduces as the N-H model

since it does not contain anisotropic contribution from the Ni nanowires. The best fitting
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extracts corresponding elastic parameters of the hydrogel as: G= 3.6 kPa, K= 17.5 kPa

[see blue solid line in Fig. 4.6].

The same set of elastic parameters are used to fit experimental data of both the per-

pendicular and parallel samples simultaneously. The continuum model of perpendicular

sample only di↵ers at Ni nanowires’ orientation with the parallel sample. Since the con-

centration of the Ni nanowires is low (⇠ 0.5 % weight percentage), the bulk modulus of

fiber-reinforced materials is assumed to be roughly the same as the bulk modulus of the

control sample. The best fitting extracts corresponding elastic parameters of the fiber-

reinforced hydrogel as: G= 5.2 kPa, �= 0.9, K= 17.5 kPa [see green and yellow solid

lines in Fig. 4.6].

4.5. Mechanism of dual-responsiveness to light and magnetic fields

4.5.1. Mechanism of photoelastic response

The fundamental mechanism of deformation under the action of light in the materials

investigated is rooted in the creation of a spatial gradient in the population of hydrophilic

and hydrophobic moieties within the hydrogel (protonated merocyanine (MCH+) versus

spiropyran (SP) segments). This should result in a decrease of water concentration within

the material as the density of SP units increases, leading in turn to mechanical deforma-

tion, either bending up or down depending on the irradiation direction. A phenomeno-

logical model [230] has been developed to describe such photoinduced hydrophobicity in

gels with an additional contribution to the free energy proportional to rsp (1� �), where

� is the monomer volume fraction and rsp is the fraction of chromophores in the SP con-

figuration. Here we derived the additional contribution to be ↵� (1� �), where ↵ is given
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Figure 4.6. Calibration of the elastic parameters from the DMA measure-
ment after light irradiation. The experiment results are shown as cross
symbols and the corresponding simulation results are shown as solid lines.

by,

(4.72) ↵ =
zf

kBT
(usw � umw)rsp

where usw and umw are the interaction energies of the SP and MCH+ moieties with

water, respectively, z is the coordination number of the lattice, and f is the fraction of

monomers containing a chromophore. Moreover, rsp is described by the kinetics of the
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chemical reaction, MCH+$SP and can be calculated by computing the light intensity as

a function of spatial coordinates in the hydrogel objects [see Sec 4.3.3].

4.5.2. Mechanism of magnetoelastic response

To quantitatively characterize deformations of the hydrogel, we developed a continuum

model of fiber-reinforced magnetoelastic materials. An external magnetic field induces

local torques since Ni nanowires prefer to align with the field. We solve Maxwell’s equa-

tions in the limit of a static magnetic field (the magnetostatics) [Eqn.4.36] to obtain the

distribution of the magnetic flux density B, which couples with the magnetization of Ni

nanowires and creates magnetic torques on the nanowires [Eqn. 4.56]. Given that the

nanowires are immobilized by the hydrogel ( [163] Fig. S3), these magnetic torques trans-

mit stresses that collectively result in macroscopic deformation of the material. Since the

interaction between the field and magnetized material is orientation dependent, strain

tensors are not enough to fully describe the state of the system. Instead, we used here the

deformation gradient tensor F , which takes into account the rotational deformation to

develop a free energy density function of fiber-reinforced magnetoelastic materials, Wme,

given by,

Wme =
1

2
G(Ī1 � 3) +

1

2
�G(Ī4 � 1)2 +

K

2
(J � 1)2 � FM ·B

where G and K are the shear and bulk modulus, respectively; � is a sti↵ness parameter

resulting from mechanical reinforcement by the aligned nanowires [221]; J = detF charac-

terizes volumetric changes with respect to the initial state; Ī1 [Eqn. 4.19] describes shape

changes and Ī4 [Eqn. 4.24] describes the deformation along the direction of nanowires;
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B is the magnetic flux density; and M is the magnetization field in the reference config-

uration [see Sec. 4.3.5 for details]. The magnetic energy term Wm= � (FM) · B [Eqn.

4.39] corresponds to the magnetic stress tensor �m = �J
�1B ⌦ FM [Eqn. 4.51]. This

model demonstrates a clear coupling between light and magnetic actuation via elastic

deformation. With light exposure, the light propagates through the hydrogel and creates

di↵erential shrinking, which induces macroscopic deformations F of the hydrogel and en-

ables the light actuation. Since the Ni nanowires are trapped within the hydrogel, the

elastic deformation will change the spatial orientation of Ni nanowires FM. This change

in Ni nanowire orientation ultimately modifies magnetic actuation (�m). In this model,

the Ni nanowires move with the hydrogel without slipping and the higher order energy

contributions in B to the free energy density Wme are ignored [53,205]. The strength of

external magnetic field stays in the linear response region of Ni nanowires [Fig. 4.3] and

all elastic parameters are calibrated from experimental measurements [Fig. 4.6]. This

continuum model was solved using finite element methods [Sec. 4.4] and benchmarked

with analytic solutions [Fig. 4.5]. It provides a quantitative analysis for the dynamic

behavior of the hydrogels in magnetic fields.

4.6. Programmed walking and steering motions

4.6.1. Walking motions

To develop robotic functions, we prepared cross-shaped hydrogel films containing aligned

Ni nanowires [Fig. 4.7A]. The film thickness was fixed around 0.5 mm to obtain an optimal

photoisomerization speed and deformation stability based on our previous results [231].

After light irradiation, the flat sample bends up as an object with two walking legs (w1,
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Figure 4.7. Light triggered walking under rotating magnetic fields.
(A) Schematic of a cross-shaped hydrogel film containing aligned Ni
nanowires irradiated from below. (B) Photographs of the bent hydrogels
(front and side views) superimposed with green wireframe representations
of the calculated photo-actuation using a finite element method. (C) (Left)
Photographs of the hydrogel walking from left to right for one cycle (white
arrows indicate direction of the magnetic fields). (Right) Calculated snap-
shots from a finite element simulation of the walking motion (color scale
used on the object’s surface represents the x-component of the magnetic
torque density). Red arrows indicate the instantaneous velocity field, blue
arrows indicate the direction of the external magnetic field, and magenta
arrows indicate the direction of the average magnetization. (D) Plot of
the x-component of the magnetic torque (blue) and leg span (red) obtained
from the simulation. (E) Plot of the experimental leg span of samples as
a function of time over multiple walking cycles. (F) Plot of the walking
speed of samples as a function of rotating frequency at various magnetic
field strengths (error bars represent standard deviations of data collected
from three separate samples). (G) Time-lapsed photographs of hydrogel
walking (collected every four cycles, ⇠8.3 s) over macroscopic distances un-
der a rotating magnetic field (14.5 mT, 0.7 Hz).
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w2) and two stabilizing arms (s1, s2) [Fig. 4.7B]. The alignment of the wires within the

object creates an anisotropic mechanical response and therefore the span between w1 and

w2 (see front view) is larger than that between s1 and s2 (see side view). We calculated

photo-actuation of these samples using the model described before and generated the

green wireframes shown in Fig. 4.7B. The wireframes overlap exactly with the actual

bending geometry of the hydrogels, observed both from front and side views, suggesting

there is clear agreement between the calculated and actual light-induced deformation

observed in the photographs. It is therefore possible to exploit this mechanical anisotropy

caused by the aligned Ni nanowires to modulate photo-actuation in hydrogel samples

with simple geometries such as squares [see [163] Figs. S13-S15]. We found that when

the hybrid hydrogel-metal hybrids are illuminated and bent by the light, a nonuniform

3D magnetization profile is established that enables walking under the influence of an

external rotating magnetic field [Fig. 4.7C]. As a control, samples containing unaligned

Ni nanowires or aligned chains of Ni nanoparticles exhibited minimal movement under

the same magnetic field and were not capable of walking [ [163] Fig. S16]. The average

magnetization (purple arrow) and the external magnetic field (blue arrow) lie within the

y-z plane and the magnetic torque density is given by ⌧m = FM/J ⇥B. Therefore, only

the x-component of the magnetic torque is a nonzero quantity. The rotating magnetic

field in the y-z plane generates an oscillatory x-component of the magnetic torque that

causes the objects to rotate alternately clockwise and counterclockwise around the x-

axis (perpendicular to the walking direction) [Fig. 4.7D]. Because of the combination of

magnetic torque and gravity, the object lands on its front and back legs in alternating

fashion [Fig. 4.7C]. Our model assumes friction between the legs and the floor is large
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enough to avoid slippage during walking [Sec. 4.4.3.5]. Magnetoelastic coupling results in

a periodic change in the hydrogel’s leg span (distance between w1 and w2) [Fig. 4.7D and

E], which enables the net displacement of the hydrogel along the y-axis. Furthermore,

longer side arms were found to be important in stabilizing the hydrogel’s movement and

optimizing its lift during walking due to a larger magnetic torque [ [163] Fig. S17]. Also,

the walking speed was found to be faster with higher frequencies (0.3–0.7 Hz) or stronger

magnetic fields (11.5–16.0 mT) [Fig. 4.7F]. With a fixed frequency (0.7 Hz) and field

strength (14.5 mT), it was possible to achieve walking over macroscopic distances (⇠53

mm) [Fig. 4.7G] and reduction of the hydrogels to millimeter size scales did not change

the mechanism of motion [163].

4.6.2. Steering motions

The hybrid hydrogels can also achieve steering motion in arbitrary directions while walking

along x-y plane by controlling the applied magnetic field to produce an additional torque

in the z direction (i.e. normal to the walking plane). Using simulations we predicted

that the objects could turn 90° in 30° increments [Fig. 4.8A] by programming the applied

field in the x, y, and z directions to achieve the required torque [Fig. 4.8B and C]. The

predicted motion using simulations was in fact observed experimentally as shown in Fig.

4.8A. The two modes of motion (walking and steering) allow our hydrogel sample to

reach any arbitrary destination on a two-dimensional level or inclined surface. Fig. 4.8D

shows a designed arbitrary path with multiple turns and Fig. 4.8E its corresponding

experimental realization. We therefore conclude that the experimental samples of these
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materials can have robotic functions, which in this case involve following continuous paths

over macroscopic distances.

4.7. E↵ect of photoswitch chemistry on walking trajectories

To develop more complex robotic functions, we synthesized hydrogels with di↵erent

molecular photoswitches to tune the kinetics of photo-actuation. Hydrogels made of SP1

can maintain their bending curvature under variable light intensities (96–190 mW/cm2)

through the duration of our experiments [Fig. 4.9A], confirmed by the change of leg span

[Fig. 4.9C, black]. We also synthesized a photoswitch (SP2) that could be covalently

incorporated in the polymeric network, which lacks the methoxy group and displays faster

photoisomerization to the closed ring form [ [163] Figs. S18-19]. The hydrogel component

of the hybrid samples containing SP2 bend and then flatten in response to relatively low

light intensities (23.5–33.0 mW/cm2) [Fig. 4.9B and C, red], since prolonged irradiation

destroys the initial light-induced hydrophobicity gradient associated with bending of the

material. Since the bending angle is highly tunable by changing irradiation conditions

[ [163] Fig. S20] and the walking behaviors depend directly on the bending geometry,

a permanent walker made of SP1 walks with a constant speed while one made of SP2

gradually loses its walking ability with continuous irradiation [Fig. 4.9D, [163] Fig S21],

and is therefore a transient walker. Note the walking speed of SP2 samples has a large

standard deviation probably due to the rapidly increasing sti↵ness upon light irradiation

[ [163] Fig. S14] as well as some uncontrolled slippage and rotation of the walker. The

walking speed can be controlled by programmed sequences of light intensity. As shown in

Fig. 4.9E and F, samples containing SP1 hydrogel were found to bend and walk faster as



ar
ch
iv
e

182

0 1 2 3 4 5 6 7 8 9 10 11
-12

-6
0
6

12
18

 Hy

 
 Hz

M
ag

ne
tic

 fi
el

d 
(m

T)

Time (s)

 Hx

 

 

0 1 2 3 4 5 6 7 8 9 10 11
0

20
40
60
80

100

 torque in z direction 

 experiment
 simulation 

 

Time (s)

Tu
rn

in
g 

an
gl

e 
(°

)

0
20
40
60
80
100

 T
or

qu
e 

(n
N
⋅m

)

A

B C

D

cycle 1              cycle 2               cycle 3 cycle 1               cycle 2               cycle 3

E

Figure 4.8. Steering motion and path followed by samples under
rotating magnetic fields. (A) Snapshots of three periods of steering
motion from both experiment and simulation shown in the top view (top)
and side view (bottom). Red arrows depict the instantaneous velocity field,
blue arrows depict the direction of external rotating magnetic fields, pur-
ple arrows depict the direction of the average magnetization and surface
colors represent the z- and x-components of the magnetic torque density
in the top and side views, respectively. (B) The x, y and z components
of the external rotating magnetic fields as functions of time. (C) Turning
angle of the hydrogel robot from the experiment (red square) and the sim-
ulation (red line) and the z component of the total magnetic torque (blue
line). Arbitrary path of the hydrogel from simulations (D) and experiment
(E). The surface colors represent the z-component of the magnetic torque
density; dashed red line indicates the motion trajectory; magenta arrows
indicate the direction of the average magnetization. Insets show a 90° turn
in four 22.5° increments. “x1, x2, x3, x4” indicate the number of turning
increments made while steering along a 90° turn.
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the light intensity increases. The walking speed of SP1 hydrogels after 10 min of sequential

irradiation at low and then higher intensity [see Fig. 4.9F] was faster (1.2 mm/s) than

the speed after 10 min of exposure to a constant light intensity (0.7 mm/s) [Fig. 4.9D].

We suggest that light irradiation history leads to variations in bending curvature and

mechanical properties. For example, Fig. 4.9E and F show plateaus in leg span and

walking speed during the first 10 min. A full understanding of this phenomenon is beyond

the scope of this paper, but we can suggest that equilibration rate of structures during

irradiation will be sensitively dependent to light exposure history. Also the SP1 hydrogel

was able to selectively bend and its walking accelerated along a section of its path where

the light source was localized, o↵ering another possibility for adaptive response to the

surrounding environment. This permanent walker gradually stops walking when light is

turned o↵ [ [163] Fig. S22], since the bending hydrogel returns to its initial flat geometry

and the hydrophobicity gradient disappears. In contrast to the SP1 samples, prolonged

light irradiation of SP2 leads to rapid penetration of light and the disappearance of the

hydrophobicity gradient through the thickness of samples. Therefore, increasing the light

intensity did not cause samples containing SP2 to walk faster, but rather accelerated

flattening of bent samples [ [163] Fig. S23].

4.8. Demonstration of robotic functions

We also found that we can create objects with di↵erent walking modes by controlling

the alignment direction of the nanowires during preparation of the Ni-hydrogel compos-

ites [ [163] Figs. S24]. Objects with nanowires aligned diagonally relative to their legs
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Figure 4.9. Chemical design and bimodal control of the hydrogel
robots. (A, B) Molecular structures of SP1 and SP2 and snapshots of the
corresponding hydrogel robots under constant light irradiation over 900 s.
(C) Leg span and (D) walking speed under irradiation with 96 mW/cm2 for
SP1 and 23.5 mW/cm2 for SP2 (error bars represent standard deviations of
data collected from three separate samples). (E, F) Variable light intensity
applied over 2100 s to program leg span and walking speed, respectively
(black bar, four di↵erent light intensities (48, 96, 144, 192 mW/cm2) were
sequentially applied on SP1 samples every 5 min followed by a dark time for
15 min; red bar, three di↵erent light intensities (4.7, 14.1, 23,5 mW/cm2)
were sequentially applied on SP2 samples for 5 min, 3 min and 27 min,
respectively).
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exhibited a walking motion by lifting two legs simultaneously under the rotating mag-

netic field [Fig. 4.10A]. Objects with nanowires aligned perpendicular to the films walk

similarly to those with nanowires in the plane of the film but do not rotate their bodies

when the magnetic field is reoriented from the y-z to the x-z plane due to lack of magnetic

anisotropy [Fig. 4.10B].

In addition to walking across a flat plane, the hydrogel objects can also climb in-

clined surfaces [Fig. 4.11A] and therefore displayed a di↵erent walking speed during the

ascending and descending process [Fig. 4.11B]. The hydrogel–metal hybrid samples can

transport and release cargos using light and magnetic field exposure. Irradiating samples

with high intensity light (4800 mW/cm2) from below caused the hydrogel to curl into

a spheroidal object, wrapping around an alginate hydrogel bead (cargo) that had been

placed underneath it [Fig. 4.11C, top]. We point out that substantial photothermal or

photobleaching e↵ects were not observed when using this short exposure to high intensity

irradiation [ [163] Fig. S25]. The rolling motion of the ball-like object under a rotat-

ing magnetic field can be guided to di↵erent directions without dropping the alginate

bead, allowing delivery of the cargo to any arbitrary destination [Fig. 4.11C, middle]. By

shining light continuously on the convex side of the object, we can eliminate the photoiso-

merization gradient to flatten the object first, followed by continuous irradiation from the

bottom to create an opposing gradient, thus causing the object to bend up and release its

cargo [Fig. 4.11C, bottom]. In addition to using the rolling motion, our robot was also

able to transport cargo using the walking motion. Since the MCH+ is positively charged,

the hydrogel robots can transport negatively charged cargo (alginate bead) adhered to
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the top of the object through electrostatic attractions, and deliver the cargo to any des-

tination by walking and subsequent release by fast spinning [Fig. 4.11D]. These results

o↵er proof-of-concept on the use of programmed light and magnetic fields to externally

and remotely stimulate materials to transport and release cargo.

x

y

z x

y

z

A B

Figure 4.10. Walking modes of the hydrogel robots in response to
nanowire orientation. Top left, schematic representation of a cross-
shaped hydrogel object irradiated from below with the Ni nanowires aligned
diagonally (A) or perpendicularly (B). Top right, photographs of the diag-
onal (A) and perpendicular (B) hydrogel object after irradiation walking
from left to right for one cycle by lifting two legs simultaneously (1, 4) or
(2, 3) (A), or by lifting leg 1 or 3 alternately (B). White arrows indicate
direction of the magnetic fields. Black arrows indicate the lifting of legs.
Bottom, the diagonal hydrogel object rotates its body 90° counterclockwise
as it turns (A), while the perpendicular hydrogel object does not rotate its
body (B) when the rotation direction of magnetic fields changes from the
y-z plane to the x-z plane.
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Figure 4.11. Hydrogel robots for performing work under rotating
magnetic fields. (A) Photographs of ascending (left) and descending
(right) processes of the hydrogel object containing the SP1 moiety on a
glass surface with an inclined angle of 9° under a magnetic field rotating in
y-z plane. (B) Plot of centroid, front and back feet of the hydrogel object
vs time when it walks on an inclined surface (blue) and a flat surface (red)
under the same rotating magnetic field. (C) Alginate bead captured un-
derneath a flat walker upon irradiation with strong white light from below,
transported by rolling under magnetic fields and released by irradiation to
invert the sample curvature. (D) Alginate bead adhered to the top of the
hydrogel object, transported by walking under magnetic fields and subse-
quently released by fast spinning.
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4.9. Discussion and future works

In this work we have investigated the design of highly hydrated soft matter with the

capability to respond to both light and magnetic fields in order to emulate locomotion

and other functions observed in living organisms. This coupling is achieved by embedding

rigid and macroscopically aligned ferromagnetic nanowires in a soft photoactive hydrogel.

Compared with conventional polymers or liquid crystal elastomers (LCEs) that have been

widely investigated, hydrogels o↵er great potential in bio-related applications due to their

high-water content and mechanical similarity to soft tissues. At the same time, the

high aspect ratio of the Ni nanowires used to create the experimental materials allows the

possibility of aligning the magnetic sca↵old of the hydrogels. Thus, these hybrid materials

have potential as systems that can be designed to have anisotropic properties. In this

context, the common spherical and irregularly shaped magnetic particles (such as NdFeB)

used in previous work lack well-defined shapes and magnetic anisotropy. In those earlier

systems, a high content of the magnetic component (⇠10 wt%) or a large magnetic field

is required to activate a considerable response. In contrast, a very low content of aligned

Ni nanowires (0.5 wt%) is su�cient in the hybrid hydrogels to generate a large magnetic

response for robotic functions using a relatively weak magnetic field strength (16 mT).

This advantage is supported by the product of the weight percentage of magnetic material

and the applied field strength in our system, which is about three times lower than

those used with previous systems. Also whereas the responses of our system to light

and magnetic fields are driven by di↵erent mechanisms, they are interestingly coupled

strongly via elastic deformation. The magnetic response depends on the geometry induced

by photo-actuation (light direction, intensity, and irradiation time), while the magnetic
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response only appears to a↵ect photo-actuation by changing the object’s orientation with

respect to incident light [ [163] Fig. S26]. As demonstrated above, chemical changes

in the photo-switching molecules can also alter the programmable shape changes upon

light exposure and in this way change the magnetically driven robotic functions. The

photo-switching approach via molecular isomerization o↵ers the advantage of activation

using relatively low light intensity [208,232,233]. This is in contrast to the commonly

used photothermal agents which require high intensity light [197,200,234].

In miniaturized form, the materials developed in this work could be potentially used

to transport and release cargoes in aqueous media through narrow passages with complex

routes. In the experiments reported here, a rotating external field precessing at a 90°

angle to the walking direction was selected because it maximizes the magnetic torque that

drives actuation when the fibers are aligned along the bending direction of the hydrogel.

However, the actuation mechanisms investigated here could be used in the future to

explore other modes of locomotion and functions by designing objects with other shapes

and fields precessing at other angles with respect to the magnetization of the nanowires.

The coupling principle developed here between shape-morphing and responsive actuation

provides a general framework to create more complex bio-inspired motions and functions.

Given the hydrogel nature of our materials, they can potentially collect from aqueous

solutions molecular components and deliver them at another point by expelling water.

Future directions could also include developing much smaller objects for drug delivery

in tissues or to specific cells. In this respect, our understanding of the synergy between

light and magnetic actuation will be important in design geometries suited for swimming

and locomotion in low Reynolds number environments [235]. The walking mechanism
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reported here can occur on any flat or inclined surface without relying on ratchets, which

is comparable with previous photothermal [236], thermal [237] or electrically [238,239]

driven walkers. The walking speed reached in our system (⇠2 mm/s) is fast from the

perspective of previously observed light-induced locomotion but is comparable to other

examples of magnetic actuation. However, we point out that in our system exposure

of the objects to photons and the magnetic field are physically inseparable factors in the

observed actuation. As we approach the walking speed in biologically relevant systems (⇠1

body length per second), the walking speed of our systems (⇠0.3 body length per second)

is comparable or lower than that of light actuated robots [240, 241], which is limited

by the viscous drag from the liquid environment and surface friction. With increasing

walking speed, the viscous drag creates higher resistance forces and slippage occurs during

walking because of insu�cient friction with the surface. Given the possibility to match

the mechanical properties and water content of molecularly designed hydrogels to those of

cells and tissues, these systems may allow us to recreate in synthetic robots the locomotion

modes and other actuation behaviors observed in living organisms. We conclude that by

theoretically integrating magnetoelasticity, polymer physics, and photochemical kinetics,

we learned how to control locomotion and shape changes in soft materials responding to

both light and magnetic fields.
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Part 2

Collective Behaviors



ar
ch
iv
e

192

CHAPTER 5

Collective Behaviors of Quincke Particles∗

5.1. Introduction

It is fascinating to observe in nature that simple entities with little or no intelligence,

such as birds [243], fishes, bacteria [244–247], cells [248], filaments [249–251], etc.,

coordinate each other within a limited range and self-organize themselves into highly

complex but also highly ordered spatial or temporal structures at a much larger scale.

Those collective behaviors of active entities are clearly out-of-equilibrium, which have been

attracting scientists to uncover the underlying principles in those complex systems [252,

253]. As the original observations in nature are generally highly complicated, scientists

prefer synthetic systems consisting of a few clearly identified components and the resulting

phenomena are easy to observe and highly reproducible for systematical investigations.

Therefore, active colloidal particles [254–258] are ideal candidates to serve as a synthetic

counterpart for studying collective behaviors of those widely existing active entities. In

recent years, active colloidal particles driven by chemicals [253,259–261], electric fields

[262, 263], magnetic fields [264–266] and light [267–269], etc., have been synthesized

and found exhibiting a diverse range of interesting collective behaviors [159,270–273].

∗This chapter is primarily based on the published work [242] of Bo Zhang, Hang Yuan, Andrey
Sokolov, Monica Olvera de la Cruz and Alexey Snezhko†, Polar state reversal in active fluids,
Nature Physics, Vol. 18, No. 2, p. 154-159, 2022, with modified notations and extended details to
comply with the structure of this work.

https://www.nature.com/articles/s41567-021-01442-6
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Meanwhile, those experimental findings also promote the development of theoretical

and numeric modeling of those active systems. Interestingly, some models, such as the

Vicsek model [274], the active Brownian particle, etc., focus on the “external” spatial be-

haviors of active systems without considering the “internal” dynamics of its self-propulsion

mechanism. On the other hand, some models, such as the Kuramoto model [275,276],

etc., focus more on the “internal” temporal behaviors of active systems but ignoring its

“external” spatial motility behaviors. In principle, the dynamics of internal degrees of

freedom (DOF) responsible for self-propulsion can a↵ect the motility of externally ob-

served spatial motions, and vice versa. As a simple example, a model for a population

of active entities including two external DOFs (position r and orientation ✓) and one

internal DOF (phase �) can be written phenomenologically as [277]:

(5.1a)
dri
dt

= U0(✓i,�i
, t) +

⌦
Iij(rj � ri,✓j � ✓i,�j

� �
i

↵
j
+ ⇠r(t)

(5.1b)
d✓i

dt
=
⌦
⇥ij(rj � ri,✓j � ✓i,�j

� �
i
)
↵
j
+ ⇠✓(t)

(5.1c)
d�

i

dt
=
⌦
�ij(rj � ri,✓j � ✓i,�j

� �
i
)
↵
j
+ ⇠�(t)

where ri, ✓i and �
i
are the position, orientation and phase of i-th particle (i = 1 · · ·N);

⇠r
i
, ⇠✓

i
and ⇠�

i
are the corresponding random noises acting on each DOFs of i-th particle;

Iij, ⇥ij and �ij denote the pairwise interactions resulted position, orientation and phase

changes of i-th particle due to j-th particle; U0 is the self-propulsion velocity of i-th

particle, which may or may not depend on its orientation and phase. And h · i indicates
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the average for surrounding particles, which can be short-ranged or long-ranged depending

on the nature of interactions.

The actual functional forms of U0, Iij, ⇥ij, and �ij in Eqn. 5.1 are usually system-

dependent, which varies for di↵erent propulsion mechanisms and pairwise interactions.

More commonly, simple functional forms are proposed to capture the most essential fea-

tures of experimental observations. For example, the Vicsek model uses simple average

between neighboring particles to describe the “alignment interactions” as active parti-

cles in many systems tend to align their directions with neighboring particles. And the

Kuramoto mode also chooses a simple constant coupling relative to the mean phases to

describe the synchronization phenomena. However, all those models still describes the

active systems in a phenomenological level and certain physical details are smeared out in

such models. It will be interesting to understand how those phenomenological interactions

emerge from microscopic interactions in the system.

In this chapter, a model for studying collective behaviors of active colloidal particles,

which possess both external and internal degrees of freedom, will be constructed from

relevant physical microscopic interactions. More specially, this chapter will particularly

focus on hydrodynamically-interacting colloidal particles. It is a long lasting interests

to simulate a collection of hydrodynamically interacting particles, which dates back to

1970s [278–281]. However, the long range nature of hydrodynamic interactions makes

direct simulations [282,283] very expensive (O(N3)) and severely limits the simulation

system size. In order to include inter-particle hydrodynamic interactions in simulations
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with acceptable simulation costs, many numeric formulations have been proposed. Exam-

ples include explicitly solvent approaches, such as the grid-based algorithms Lattice Boltz-

mann Method (LBM) [284–289] and the coarse-grained methods like Dissipative Particle

Dynamics (DPD) [290–293] and Multi-particle Collision Dynamics (MPCD) [294–299];

implicit solvent approaches, such as Brownian Dynamics (BD) [300, 301] or Stokesian

Dynamics (SD) [302–305]. There are also formulations based on directly solving the

Stokes’ equation [306, 307], boundary element methods [216, 308], or fluctuating hy-

drodynamics [309,310], etc. This list can keep going and each of the above mentioned

methods have its own advantages and limitations. In this work, we will follow the ap-

proach of Stokesian Dynamics [302], which treats the solvent implicitly describes by the

Stokes’ equation, which enables deriving the explicit functional forms of hydrodynamic

interactions [Sec. 5.2].

Following that, the Quincke particle is selected to serve as a concrete example of ac-

tive colloidal particles with both external (rolling motion) and internal (electric dipole

moments) DOFs to illustrate the ideas. Based on the understanding of a single Quincke

particle [Chap. 3], the propulsion mechanism of Quincke particles is combined with the

Stokesian Dynamics, which yields a particle-based simulation model for a population of

Quincke particles [Sec. 5.3] constructed from its relevant microscopic interactions [110].

Then, an interesting polar state reversal phenomenon in suspension of Quincke rollers

confined by a circular well [242] is discussed and also demonstrate how such type of sim-

ulation models with both external and internal dynamics help elucidating the important

roles of relevant microscopic interactions [Sec. 5.4]. Finally, the whole chapter concludes

with a short discussion and possible future development [Sec. 5.5].
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5.2. Stokesian Dynamics

In this section, the basics of Stokesian Dynamics (SD) will be systematically introduced

in details. Through out this chapter, only simple incompressible Newtonian fluids will be

considered, which assumes the constitutive relation of fluid as:

(5.2) �h = �pI + µ
�
ru+ruT

�

where p and µ are the pressure and the dynamic viscosity of fluid, respectively; u is the

velocity filed of fluid and �h is the hydrodynamic stress tensor. By the conservation of

mass and linear momentum, the general motions of fluid are described by the Navier-

Stokes (N-S) equations [Eqn-3.5] [128]:

(5.3)

8
>><

>>:

⇢
Du

Dt
= r · �h + ⇢f

r · u = 0

where D

Dt
is the material derivative [Eqn. 3.6], ⇢ is the density of fluid and f is any possible

external volumetric forces. Denoting the relevant characteristic length, time and velocity

scales as Lc, ⌧c and Uc respectively, then the above N-S equations can be rendered into a

dimensionless form as [121]:

(5.4) Re St
@u

@t
+ Re u ·ru = �rp+r2u
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Two dimensionless numbers, Reynolds number (Re) and Strouhal number (St), natu-

rally emerge, which are given as:

(5.5a) Re =
⇢UcLc

µ

(5.5b) St =
Lc

Uc⌧c

For the system of interest, a collection of micrometer size colloids (a⇠ 1 µm) immersed

in a viscous fluid with a typical speed of micrometers per second, the corresponding Re of

the system is very small (⇠ 10�3� 10�1). Besides, the interested phenomena here usually

happen in the di↵usion time scale (⌧D = 6⇡µa3/kBT ⇠ 1 s) or longer, which results in

a small St and the e↵ect due to transient Stokes’ flows is negligible. Therefore, the N-S

equations reduce as the Stokes’ equations [Eqn. 5.4, Re, St ! 0]:

(5.6)

8
>><

>>:

µr2u = rp+ f

r · u = 0

where u is the velocity field of fluid, p is the pressure, µ is the dynamic viscosity of fluid

and f is the external body force.

5.2.1. Integral representation

As shown in Eqn. 5.6, the Stokes’ equations are linear equations and the Green’s function

of Stokes’ equation [145,311] in the unconfined space is known as the Oseen tensor:

(5.7) J(r) =
I

r
+

rr

r3
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where r = |r| and r is the position vector. For the convenience, following expressions in

this section adopt the Einstein notation unless explicitly written in the vectorial form.

Then, the flow field generated by a point force F at origin is given as:

(5.8) u
PF

i
=

1

8⇡µ
Jij(r)Fj

Thus, by the linearity of the Stokes’ equations, the total flow field induced by a

collection of finite size rigid particles can be written as:

(5.9) ui(x) = u
1
i
(x) +

1

8⇡µ

NX

↵=1

Z

S↵

Jij(x� y)fj(y)dS(y)

where u
1
i

(i = x, y, z) is the background linear velocity field, S↵ is the surface of ↵-th

particle (↵ = 1, · · · , N), y is the location at the particle surface, fj(y) is the force density

(or traction force) distributed over the particle surface and

(5.10) fj(y) = �jk(y)nk(y)

where �jk is the stress tensor and nk is the outer normal vector of particle surface. The

equation 5.9 is known as the integral representation of the solution of Stokes’ equation

[131]. Although this solution is exact, it requires detailed knowledge of force density

distribution f (or stress tensor �), which it’s generally not known from an experimental

point of view. Besides, this formulation relies on the Green’s function of the Stokes’

equation, which makes it di�cult to extend to confinement of complex geometry.
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5.2.2. Multipole expansion

Analogous to electrostatics [129], the multipole expansion method can be applied to get

the leading order contributions of flow fields in Eqn. 5.9 at large distance. Unlike the

case of electrostatics which deals with scalar quantities (electric potential ' and electric

charges q), here vectorial quantities (flow velocity u and force density f) and anisotropic

Green’s function [Eqn. 5.7] add additional mathematical complexities but also result in

richer physical interactions. Considering the flow field far away from the particle, i.e.

|x� y| � |x↵ � y|, the Tarloy expansion of the Oseen tensor is:

(5.11) Jij(x� y) = Jij(x� x↵) + (x↵
k
� yk)rkJij(x� x↵) + · · ·

If we truncate the above expansion at the linear order and plug it back into the integral

representation [Eqn. 5.9], it gives that

(5.12) ui(x) ⇡ u
1
i
(x) +

1

8⇡µ

NX

↵=1

Z

S↵

[Jij(x� x↵) + (x↵
k
� yk)rkJij(x� x↵)] fj(y)dS(y)

Next, the integrals in above expression will be executed to derive the corresponding ex-

pression in terms of force moments.

5.2.2.1. force. The integral of the first term is straightforward to evaluate,

(5.13)

Z

S↵

Jij(x� x↵)fj(y)dS(y) = Jij(x� x↵)F ↵

j

where F
↵

j
is the zero-th order moment of force density or the total forces acting on ↵-th

particle. And the propagator of the force (or stokeslet) is simply the Oseen tensor Jij.
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The integral of the second term can be rewritten as a more familiar form:

(5.14)Z

S↵

(x↵
k
� yk)rkJij(x� x↵)fj(y)dS(y) = �rkJij(x� x↵)

Z

S↵

(yk � x
↵

k
)fj(y)dS(y)

= �rkJij

Z

S↵

XkfjdS = �rkJij

Z

S↵

MjkdS

where Xk = yk � x
↵

k
is the relative distance between particle surface and particle center.

And the first moment of surface traction force Mjk is defined as:

(5.15) Mjk = fjXk

To connect the first moment of force density M with more familiar mechanical quan-

tities, note that any rank-2 tensor can be decomposed as the sum of scalar, symmetric

tensor and anti-symmetric tensor [312]:

(5.16) Mjk = fjXk =
1

3
flXl�jk +

1

2
(fjXk � fkXj) +


1

2
(fjXk + fkXj)�

1

3
flXl�jk

�

where �ij is the Kronecker delta, which is 1 if the indexes are equal, and 0 otherwise. The

scalar component (trace of the first order moments) does not contribute to the flow field

in unconfined space as

(5.17) �rkJij

Z

S↵

1

3
flXl�jkdS = �rkJik

Z

S↵

1

3
flXldS = 0

where the fact that the Oseen tensor is divergence-free (rkJik = 0) [Appx. B.1] has been

applied.
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5.2.2.2. torque. The anti-symmetric components of the first order moments M corre-

spond to contributions from the torque,

(5.18)

�rkJij

Z

S↵

1

2
(fjXk � fkXj)dS =

Z

S↵

✓
1

2
rkJijfkXj �

1

2
rkJijfjXk

◆
dS

=

Z

S↵

✓
1

2
rkJijfnXm�nk�mj �

1

2
rkJijfnXm�mk�nj

◆
dS

=

Z

S↵

1

2
rkJijfnXm (�nk�mj � �nj�mk) dS

=

Z

S↵

1

2
rkJijfnXm"lnm"lkj =

Z

S↵

1

2
"lkjrkJij"lnmfnXmdS

=

✓
�1

2
"jklrkJil

◆Z

S↵

("jmnXmfn) dS

= Rij

Z

S↵

⌧jdS = RijT
↵

j

where "ijk is the 3D Levi-Civita symbol, which is 1 if (i, j, k) is an even permutation of

(1, 2, 3), -1 if it is an odd permutation, and 0 if any index is repeated. And ⌧j is the torque

density:

(5.19) ⌧j = "jmnXmfn

and the total torque on ↵-th particle is:

(5.20) T
↵

j
=

Z

S↵

⌧jdS

and Rij is the propagator of torque (or rotlet):

(5.21) Rij =
1

2
"iklrkJjl
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5.2.2.3. stresslet. The symmetric components of the first order momentsM correspond

to contributions from the stresslet,

(5.22)

�rkJij

Z

S↵


1

2
(fjXk + fkXj)�

1

3
flXl�jk

�
dS = �rkJij

Z

S↵

1

2
(fjXk + fkXj) dS

= �
✓

1

2
rkJij +

1

2
rjJik

◆
+

✓
1

2
rkJij �

1

2
rjJik

◆�Z

S↵

1

2
(fjXk + fkXj) dS

= �
✓
1

2
rkJij +

1

2
rjJik

◆Z

S↵

1

2
(fjXk + fkXj) dS = �Kijk

Z

S↵

sjkdS = �KijkS
↵

jk

where the scalar components have been dropped [Eqn. 5.17] and also note that the double

contraction between symmetric and anti-symmetric tensor is zero. The stresslet density

sjk is defined as:

(5.23) sjk =
1

2
(fjXk + fkXj)

and the total stresslet on ↵-th particle is:

(5.24) S
↵

jk
=

Z

S↵

sjkdS

and the propagator of stresslet is a third-rank tensor:

(5.25) Kijk =
1

2
rkJij +

1

2
rjJik

Please be aware that we can drop the trace part of Sjk relies on the choice of the

Green’s function. It’s valid for the Oseen tensor[Eqn. 5.7] but not always for other



ar
ch
iv
e

203

choices. More generally, the stresslet should incorporate the scalar part, i.e.

(5.26) sij =


1

2
(fiXj + fjXi)�

1

3
fkXk�ij

�

5.2.2.4. flow fields. Finally, the multipole expansion of the integral representation[Eqn.5.9]

is obtained by adding flows induced by each force moments together:

(5.27) ui(x) ⇡ u
1
i
(x) +

1

8⇡µ

NX

↵=1

⇥
Jij(x� x↵)F ↵

j
+Rij(x� x↵)T ↵

j
�Kijk(x� x↵)S↵

jk

⇤

As shown in the above equation, the flow field depends linearly on all force density

moments, such as force, torque and stresslet, etc. This is the most important feature of

the Stokesian Dynamics (SD), which builds upon the linearity of the Stokes’ equation.

In principle, the multipole expansion procedure can extend to arbitrary orders. For our

interests of system, it su�ces to retain only up to the linear order since we care most

about the force and torque parts.

The Eqn. 5.27 has a truncation error term of O(a/ |x� x↵|3), where a is the radius of

particles. For the case of hard spherical particles, it turns out that the multipole expansion

terminates quickly and the error term can be further reduced by introducing curvature

terms related to the finite size of particles, which are exact for isolated particles [121,283]:

(5.28)

ui(x) ⇡ u
1
i
(x) +

1

8⇡µ

NX

↵=1

✓
1 +

1

6
a
2r2

◆
Jij(x� x↵)F ↵

j
+Rij(x� x↵)T ↵

j

�
✓
1 +

1

10
a
2r2

◆
Kijk(x� x↵)S↵

jk

�
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It shows that the far-field flow induced by a finite size spherical particle can be repre-

sented exactly as a force monopole and degenerate force quadrupole; a torque monopole;

a stresslet monopole and degenerate stresslet octupole.

For simplicity, only mono-dispersed suspension (a↵ = a, ↵ = 1 · · ·N) will be dis-

cussed in this work. And the theoretical framework introduced here can be easily extended

to poly-dispersed suspension [313].

5.2.3. Faxén laws

If the mechanical quantities acting on each particles (F↵
,T↵

,S↵) are known, the equation

5.28 enables the calculation of flow fields u providing the observation point x is su�ciently

far away from every particles. However, we are more interested in calculating the kinetic

motions of each particles (U↵
,⌦↵

,E↵), where U↵ is the translational velocity, ⌦↵ is the

angular velocity and E↵ is the straining velocity of ↵-th particle. Therefore, those kinetic

variables need to be calculated from the flow velocity u.

5.2.3.1. Direct interaction. The simplest situation is the force moments (F�
,T�

,S�)

acting directly on the particle of interest with motions (U↵
,⌦↵

,E↵), i.e. ↵ = �. In

such scenarios, each particle motion modes (translation, rotation and straining) can be

solved analytically by balancing the viscous force moments with external force moments

[121,131], which relates the particle motions with external force moments as:

F↵ = 6⇡µa(U↵ �U1)(5.29a)

T↵ = 8⇡µa3(⌦↵ �⌦1)(5.29b)

S↵ =
20

3
⇡µa

3(E↵ � E1)(5.29c)
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where an externally imposed linear background flow is included,

(5.30) u1(x) = U1 +⌦1 ⇥ x+ E1 · x

Therefore, the motion of an isolated particle can be obtained directly from the above

expressions.

5.2.3.2. Indirect interaction. A more common situation is the ambient flow generated

by force moments (F�
,T�

,S�) acting on �-th particle a↵ect the motion of ↵-th particle

(U↵
,⌦↵

,E↵), i.e. ↵ 6= �. The ambient flow field induced by all other particles excluding

the ↵-th particle can be written as:

(5.31)

u
0
i
(x) ⇡ u

1
i
(x) +

1

8⇡µ

NX

�=1,� 6=↵

✓
1 +

1

6
a
2r2

◆
Jij(x� x�)F �

j
+Rij(x� x�)T �

j

�
✓
1 +

1

10
a
2r2

◆
Kijk(x� x�)S�

jk

�

= u
1
i
(x) +

1

8⇡µ

NX

�=1,� 6=↵

n
F
⇥
Jij(x� x�)

⇤
F
�

j
+ T

⇥
Jij(x� x�)

⇤
T
�

j
� S

⇥
Jij(x� x�)

⇤
S
�

jk

o

where F [Jij(x� y)], T [Jij(x� y)] and S [Jij(x� y)] denote linear functions which de-

scribe the far-field response to external forces, torques, stresslets respectively, and are

functions of the Oseen tensor [Eqn. 5.7] and its derivatives [Appx. B.1]:

(5.32a) F [Jij(x� y)] =

✓
1 +

a
2

6
r2

◆
Jij(x� y), |x� y| > 2a

(5.32b) T [Jij(x� y)] = Rij(x� y) =
1

2
"iklrkJjl(x� y), |x� y| > 2a
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(5.32c)

S [Jij(x� y)] =

✓
1 +

a
2

10
r2

◆
Kijk(x�y) =

✓
1 +

a
2

10
r2

◆
1

2
(rkJij +rjJik) , |x� y| > 2a

5.2.3.3. the Faxén laws in di↵erential form. If we follow the calculation procedure

for a single isolated particle [Eqn. 5.29], we should compute the corresponding stress

generated by the ambient flow u0 and balance it with the viscous stress to determine the

particle motions. Fortunately, the so-called Faxén laws provide elegant shortcuts to the

results. By leveraging the Lorentz Reciprocal Theorem (LRT) [Sec. 5.2.4.1], resulting

kinetic motions of ↵-th particle due to the ambient flow u0 induced by other particles

(� 6= ↵) can be written as [121]:

(5.33)

8
>>>>>>><

>>>>>>>:

U
↵

i
� U

1
i
(x↵) = F [u0

i
(x);x↵] =

✓
1 +

a
2

6
r2

◆
u
0
i
(x↵)

⌦
↵

i
�⌦

1
i
(x↵) = T [u0

i
(x);x↵] =

1

2
"ijkrju

0
k
(x↵)

E
↵

ij
� E

1
ij
(x↵) = S[u0

i
(x);x↵] =

✓
1 +

a
2

10
r2

◆
1

2

⇥
rju

0
i
(x↵) +riu

0
j
(x↵)

⇤

where F [u0
i
(x);x↵], T [u0

i
(x);x↵] and S [u0

i
(x);x↵] are the same linear functions used in

Eqn. 5.31 but applied to the ambient flow u0(x) and evaluated at the position of ↵-th

particle x↵ instead. As F [ · ], T [ · ] and S [ · ] are linear di↵erential operators, the above

relations[Eqn. 5.33] is referred as the Faxén laws in di↵erential form.

5.2.4. Far-field mobility tensors

Next, the kinetic motions of particles are readily available by substituting the ambient

flow[Eqn. 5.31] into the Faxén laws[Eqn. 5.33]. As all operators involved are linear due
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to the linearity of Stokes’ equation, the relation connecting kinetic motions (U↵
,⌦↵

,E↵)

and force moments (F↵
,T↵

,S↵) can be written in a matrix form:

(5.34)

0

BBBB@

U↵ �U1

⌦↵ �⌦1

E↵ � E1

1

CCCCA
= M1

0

BBBB@

F↵

T↵

S↵

1

CCCCA

where M1 is the far-field grand mobility tensor as it’s essentially based on the far-field

multipole expansion. In the above expression, only quantities of ↵-th particle are explicitly

written insides the parentheses for compactness, which actually denotes quantities of every

particles all stacked together into a single vector. To be clear, the grand mobility tensor

can be decomposed into a block-wise form:

(5.35) M1 =

0

BBBB@

M1
UF
M1

UT
M1

US

M1
⌦F
M1

⌦T
M1

⌦S

M1
EF
M1

ET
E1

ES

1

CCCCA

where M1
XY

denotes the far-field mobility tensor connecting the kinetic motion X (X =

U,⌦ or E) resulted from the force moment Y (Y = F, T or S) between N particles. For
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the mobility tensors between two di↵erent particles (↵ 6= �),

M↵�

UF
=
⇣
M

↵�

UF ij

⌘
=

1

8⇡µ

✓
1 +

a
2

6
r2

◆✓
1 +

a
2

6
r2

◆
Jij(x

↵ � x�)(5.36a)

M↵�

UT
=
⇣
M

↵�

UT ij

⌘
=

1

8⇡µ

✓
1 +

a
2

6
r2

◆
Rij(x

↵ � x�)(5.36b)

M↵�

US
=
⇣
M

↵�

US ijk

⌘
= � 1

8⇡µ

✓
1 +

a
2

6
r2

◆✓
1 +

a
2

10
r2

◆
Kijk(x

↵ � x�)(5.36c)

M↵�

⌦T
=
⇣
M

↵�

⌦T ij

⌘
=

1

8⇡µ

1

2
"iklrkRlj(x

↵ � x�)(5.36d)

M↵�

⌦S
=
⇣
M

↵�

⌦S ijk

⌘
= � 1

8⇡µ

1

2
"ilmrl

✓
1 +

a
2

10
r2

◆
Kmjk(x

↵ � x�)(5.36e)

M↵�

ES
=
⇣
M

↵�

ES ijkl

⌘
= � 1

8⇡µ

✓
1 +

a
2

10
r2

◆✓
1 +

a
2

10
r2

◆
(5.36f)

1

2

⇥
rjKikl(x

↵ � x�) +riKjkl(x
↵ � x�)

⇤

and for the mobility tensors of each particles themselves (↵ = �),

M↵↵

UF
=
�
M

↵↵

UF ij

�
=

1

6⇡µa
�ij(5.37a)

M↵↵

UT
=
�
M

↵↵

UT ij

�
= 0(5.37b)

M↵↵

US
=
�
M

↵↵

US ij

�
= 0(5.37c)

M↵↵

⌦T
=
�
M

↵↵

⌦T ij

�
=

1

8⇡µa3
�ij(5.37d)

M↵↵

⌦S
=
�
M

↵↵

⌦S ij

�
= 0(5.37e)

M↵↵

ES
=
�
M

↵↵

ES ijkl

�
=

3

20⇡µa3
�ijkl(5.37f)
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where superscripts ↵ and � denote the mobility tensor is between ↵-th and �-th particle,

subscripts i, j, k, l indicate the Cartesian components of each tensors and �ijkl is the fourth-

rank deviatoric traceless unit tensor:

(5.38) �ijkl =
1

2

✓
�ik�jl + �il�jk �

2

3
�ij�kl

◆

Note that the Oseen tensor is biharmonic, i.e. r4
Jij(r) = 0 [Appx. B.1.1], which enables

further simplification of mobility tensors. The explicit expressions of all far-field mobility

tensors can be found at Appx. B.4.2.

Only the upper half of the grand mobility tensor [Eqn. 5.35] need to be computed be-

cause of the symmetry relations between mobility tensors. Actually, the so-called Lorentz

Reciprocal Theorem (LRT) imposes constraints on symmetries of mobility tensors.

5.2.4.1. Lorentz reciprocal theorem. Suppose that (u(1)
,�(1)) and (u(2)

,�(2)) are

two di↵erent solutions of the Stokes’ equation with the same geometry but subjected to

di↵erent boundary conditions. The Lorentz Reciprocal Theorem states that:

(5.39)
I

S

u(1) · (�(2) · n̂)dS�
Z

V

u(1) · (r ·�(2))dV =

I

S

u(2) · (�(1) · n̂)dS�
Z

V

u(2) · (r ·�(1))dV

In the absence of the external forces (r · � = 0), it reduces as:

(5.40)

I

S

u(1) · (�(2) · n̂)dS =

I

S

u(2) · (�(1) · n̂)dS

The proof of Lorentz Reciprocal Theorem can be found in many microhydrodynamic

books [121, 131, 145]. Here, the proof will be repeated to emphasize its assumptions
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during the derivations. By applying the divergence theorem, it’s equivalent to prove that

(5.41) ri

⇣
u
(1)

j
�
(2)

ij

⌘
� u

(1)

i
rj�

(2)

ij
= ri

⇣
u
(2)

j
�
(1)

ij

⌘
� u

(2)

i
rj�

(1)

ij

Note the following identities,

(5.42a) �
(2)

ij
rju

(1)

i
= rj

⇣
�
(2)

ij
u
(1)

i

⌘
� u

(1)

i
rj�

(2)

ij
= ri

⇣
u
(1)

j
�
(2)

ij

⌘
� u

(1)

i
rj�

(2)

ij

(5.42b) �
(1)

ij
rju

(2)

i
= rj

⇣
�
(1)

ij
u
(2)

i

⌘
� u

(2)

i
rj�

(1)

ij
= ri

⇣
u
(2)

j
�
(1)

ij

⌘
� u

(2)

i
rj�

(1)

ij

where stress tensors are symmetric (�(1)

ij
= �

(1)

ji
and �

(2)

ij
= �

(2)

ji
) as long as there is no

external angular momentum in the system [see Sec. 4.57]. For a general linear constitutive

relation of Newtonian liquids, the relation between stress tensor and strain rate tensor

can be written as

(5.43) �
(1)

ij
= µijklrlu

(1)

k
, �

(2)

ij
= µijklrlu

(2)

k

Thus,

(5.44) �
(2)

ij
rju

(1)

i
= µijklrlu

(2)

k
rju

(1)

i
, �

(1)

ij
rju

(2)

i
= µijklrlu

(1)

k
rju

(2)

i

For the LRT to hold everywhere (�(2)

ij
rju

(1)

i
= �

(1)

ij
rju

(2)

i
), it requires that

(5.45) µijkl = µklij
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The viscosity tensor must be invariant under the exchange of index pairs (ij $ kl), which

corresponds to the time reversal symmetry [see Sec. 6.3.1 and 6.3.6.1 for more discussions].

5.2.4.2. symmetry relations. There are many symmetry relations of mobility tensors

constrained by symmetry properties of system. These symmetry relations will come in

handy to speed up numeric implementations by skipping redundant computations. For a

complete set of symmetry relations, please refer to Appx. B.4.4.

Every symmetry property of system should be reflected in the derived mathematical

expressions of mobility tensors [Eqn. 5.36]. There are symmetry relations of component

indices (i, j, k, l) [Appx. B.4.4.1] and particle indices (↵, �) [Appx. B.4.4.2], which reflects

the space symmetry and the parity symmetry of system, respectively. These symmetry

relations should be easy to identify and are provided without proof. Besides, there are

also symmetry relations constrained by the Lorentz Reciprocal Theorem [Appx. B.4.4.3],

which reflects the time reversal symmetry of system. These symmetry relations are pro-

vided with its brief proofs. Finally, there are also three symmetry relations can be derived

by the definition of the Faxén laws [Appx. B.4.4.4]. These three relations are actually

redundant and can be derived from previous three sets of symmetry relations. It serves

as a consistency check and also a convenient reference.

Now it should be clear that the grand mobility tensor M1 [Eqn. 5.35] is “symmetric”

and only the upper (or lower) half of the matrix needs to be computed as

(5.46) M
↵�

⌦F ij
= M

↵�

UT ij
, M

↵�

EF ijk
= �M

↵�

US kij
, M

↵�

ET ijk
= M

↵�

⌦S kij
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5.2.4.3. positive definiteness. Physically, any valid construction of the grand mobility

tensor must ensure the energy dissipation is always positive, i.e.

(5.47) P = FTU = FTMF > 0, 8F 6= 0

Mathematically, the above expression is a quadratic form and it is equivalent to say that

the grand mobility tensor M is positive definite.

5.2.5. Near-field resistance tensors - lubrication theory

So far, the far-field mobility tensors M1 enable the computation of particle motions as

long as the average distance between particles are su�ciently larger than the particle

radius (
��x↵ � x�

�� � 2a). This corresponds to the scenario of dilute suspension. However,

for the case of dense suspension, particles are commonly close to each other or nearly in

contact (
��x↵ � x�

�� ⇠ 2a). The original multipole expansion based calculation[Eqn. 5.11]

converges slowly in such conditions and requires an in-practically large number of higher

order moments to obtain su�cient accuracy. In order to overcome these di�culties in

the short range, methods based on analytic solutions and asymptotic analysis are devel-

oped [313–316] to calculate the short range hydrodynamic interactions (or lubrication

interactions) between two particles accurately and e�ciently.

If only two-body interactions are considered for the near-field hydrodynamic interac-

tions, the near-field hydrodynamic interactions are pairwise additive and can be similarly
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expressed in a matrix form:

(5.48)

0

BBBB@

F↵

T↵

S↵

1

CCCCA
= R�

0

BBBB@

U↵ �U1

⌦↵ �⌦1

E � E1

1

CCCCA

where is R� the near-field grand resistance tensor, which takes into account of the lubrica-

tion interactions for two closely spaced spherical particles and is constructed by summing

the resistance tensors between all particle pairs within a cuto↵ distance d
c:

(5.49) R� =
X

(↵,�):|x↵�x�|<dc

⇣
R↵�

�

⌘

where R↵�

�
is the resistance tensor between ↵-th particle and �-th particle. And, the full

resistance tensor R� can be written in a block-wise form:

(5.50) R� =

0

BBBB@

R�
FU
R�

F⌦
R�

FE

R�
TU
R�

T⌦
R�

TE

R�
SU
R�

S⌦
R�

SE

1

CCCCA

where RY X denotes the near-field resistance tensor connecting the force moment Y (Y =

F, T or S) due to the kinetic motion X (X = U,⌦ or E) between N particles. Each of
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these resistance tensors between ↵-th particle and �-th particle are:

R↵�
FU

=
⇣
R

↵�

FU ij

⌘
= X�

FU
L
1

ij
+ Y�

FU
L
2

ij
(5.51a)

R↵�
TU

=
⇣
R

↵�

TU ij

⌘
= Y�

TU
L
3

ij
(5.51b)

R↵�
SU

=
⇣
R

↵�

SU ijk

⌘
= X�

SU
L
4

ijk
+ Y�

SU
L
5

ijk
(5.51c)

R↵�
T⌦

=
⇣
R

↵�

T⌦ ij

⌘
= X�

T⌦
L
1

ij
+ Y�

T⌦
L
2

ij
(5.51d)

R↵�
S⌦

=
⇣
R

↵�

S⌦ ijk

⌘
= Y�

S⌦
L
6

ijk
(5.51e)

R↵�
SE

=
⇣
R

↵�

SE ijkl

⌘
= X�

SE
L
7

ijkl
+ Y�

SE
L
8

ijkl
+ Z�

SE
L
9

ijkl
(5.51f)

where X�
Y X

���r↵ � r�
���,Y�

Y X

���r↵ � r�
��� and Z�

Y X

���r↵ � r�
��� (Y = F, T or S and X =

U,⌦ or E) are scalar resistance functions of the resistance tensor R↵�
Y X

, which only depend

on the relative distance between ↵-th particle and �-th particle (also the particle size ratio

if particles are not equal sized). The superscript � is a parameter used for distinguishing

self and mutual cases, which is defined as:

(5.52) � =

8
>><

>>:

1 ↵ = �

2 ↵ 6= �

and Li, i = 1, 2, · · · , 9 are unit displacement tensors representing each independent relative

motion modes between two particles (for example, L1, L2 and L3 correspond to squeezing,
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shearing and vortical motion respectively):

L
1

ij
= r̂ir̂j(5.53a)

L
2

ij
= �ij � r̂ir̂j(5.53b)

L
3

ij
= "ijkr̂k(5.53c)

L
4

ijk
=

✓
r̂ir̂j �

1

3
�ij

◆
r̂k(5.53d)

L
5

ijk
= r̂i�jk + r̂j�ik � 2r̂ir̂j r̂k(5.53e)

L
6

ijk
= "iklr̂lr̂j + "jklr̂lr̂i(5.53f)

L
7

ijkl
=

3

2

✓
r̂ir̂j �

1

3
�ij

◆✓
r̂kr̂l �

1

3
�kl

◆
(5.53g)

L
8

ijkl
=

1

2
(r̂i�jlr̂k + r̂j�ilr̂k + r̂i�jkr̂l + r̂j�ikr̂l � 4r̂ir̂j r̂kr̂l)(5.53h)

L
9

ijkl
=

1

2
(�ik�jl + �jk�il � �ij�kl + r̂ir̂j�kl + �ij r̂kr̂l(5.53i)

�r̂i�jlr̂k � r̂j�ilr̂k � r̂i�jkr̂l � r̂j�ikr̂l + r̂ir̂j r̂kr̂l)

where r̂i is the i-th component of the unit direction vector r̂= (r↵ � r�)/
��r↵ � r�

��.

Therefore, the key of the lubrication interactions is to determine those scalar resistance

functions X�
Y X

���r↵ � r�
���,Y�

Y X

���r↵ � r�
��� and Z�

Y X

���r↵ � r�
���. If we can find explicit

expressions of those scalar resistance functions, the near-field resistance tensors can be

similarly computed just like the far-field mobility tensors. Unfortunately, it turns out

that it’s rather di�cult to find explicit expressions of those scalar resistance functions

work well for a wide range of particle separation. For example, asymptotic expressions of

each scalar resistance functions [121,317] are derived when the gap distance between two
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particles � is very small. By using the Lamb’s solution of Stokes’ equation and the Method

of Reflections [316], numeric values of each scalar resistance functions can be numerically

evaluated. The multipole expansion can also be utilized to evaluate those scalar resistance

functions providing su�cient higher order terms [314,318]. Each of those methods have

their own applicable range of separation distance. A convenient practice is to numerically

evaluate those scalar resistance functions using di↵erent methods at various separation

distance and get the full range of numeric values by interpretation [313,319]. As shown

in figure 5.1, values of scalar resistance functions (for simplicity, only X�
FU

, Y�
FU

, Y�
TU

, X�
T⌦

and Y�
T⌦

are shown) can be obtain via interpretation at any particular particle separation

distance, which in turn can be used for constructing the near-field resistance tensors [Eqn.

5.50].

5.2.6. Near-field mobility tensors - RPY approximation

From a physic point of view, when the gap distance � between two particles is in nanometer

scale, additional e↵ects other than pure hydrodynamic interactions may become more

important, such as the frictional contacts [320–323]. The lubrication interactions derived

for an ideally smooth spherical particle may not be able to describe short range behaviors

in systems such as a dense suspension.

From a simulation point of view, as two particles are closely separated or even in con-

tact, the diverging nature of lubrication interactions (1/� for squeezing motion and log(�)

for shearing motion) [Fig. 5.1] generally create an ill-conditioned near-field resistance

matrix, which deteriorate the convergence of iterative solvers. Direct solvers can be used

to invert the ill-conditioned matrix but it’s generally costly unless specifically optimized
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Figure 5.1. Plots of scalar resistance functions of resistance tensors RFU ,
RTU and RT⌦ evaluated by di↵erent methods with respect to scaled sep-
aration distance � = r � 2 =

��r↵ � r�
�� /a � 2. The x-axis is shown in

logarithmic scale. The first and second row of subplots correspond to the
case � = 1 and � = 2 respectively. The blue dots are the asymptotic val-
ues given by [317]; the orange dots are the numeric values derived by the
Lamb’s solution and the Method of Reflections [316]; the green dots are
the numeric values derived by the multipole expansion [314,318]. The red
dash line indicates a linear interpretation of all three method over the whole
tabulated range [313,319]. The purple dots correspond to the far-field val-
ues by directly inverting the far-field mobility tensors[Eqn. 5.35], which
matches with near-field values smoothly at large distance.

with special properties of the ill-conditioned matrix [see Sec. 5.3.6]. It’s intuitive to pre-

vent two particles from overlapping by introducing a strong repulsion between particles.

However, a strong short-range repulsion severely limits the maximum time step of the

simulation [324], especially for the dense suspension, which limits the access to the long

time behaviors like di↵usion, sedimentation, etc.

Therefore, although the near-field hydrodynamic interactions can be in principle com-

puted accurately from lubrication theory [Sec. 5.2.5], it’s practically more convenient

to simply regularize the interactions between overlapping particles, especially when the
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near-field interactions are not important in the system. Such regularized interactions

can be systematically derived based on the Rotne-Prager-Yamakawa (RPY) approxima-

tion [278,300,325] shown below.

5.2.6.1. ambient flow - integral form. As shown in equation 5.31, the ambient flow

induced by other particles at large distance(
��x� x�

�� � 2a) excluding the ↵-th itself can

be written as:

u
0
i
(x)� u

1
i
(x) ⇡

1

8⇡µ

NX

�=1,� 6=↵

n
F
⇥
Jij(x� x�)

⇤
F
�

j
+ T

⇥
Jij(x� x�)

⇤
T
�

j
� S

⇥
Jij(x� x�)

⇤
S
�

jk

o
,
��x� x�

�� � 2a

where the functional forms of F [Jij(x� y)], T [Jij(x� y)] and S [Jij(x� y)] are given in

equation 5.32, which are expressed in di↵erential forms and only valid at large distance.

However, keep in mind that the multipole expansion actually treat each particle as a point

particle with each order of moments acting on it. To consider the interactions between

two closely separated particles of finite size, the most naive approximation is to simply

assume each force moments uniformly distributed on the particle surface, i.e.

(5.54)

u
0
i
(x)� u

1
i
(x) ⇡ 1

8⇡µ

NX

�=1,� 6=↵

I

S�

Jij(x� y)

"
F
�

j

4⇡a2
+

3

8⇡a3
✏jklT

�

k
nldS +

3

4⇡a3
S
�

jk
nk

#
dS

We can prove that the far-field expansion of the above integral expression of ambient

flow matches with the di↵erential form shown in equation 5.31 [see Appx. B.3.1]. There-

fore, the integral forms of F [Jij(x� y)], T [Jij(x� y)] and S [Jij(x� y)] can be defined
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as:

F [Jij(x� y);S] =
1

4⇡a2

I

S

eJij(x� y)dS(y)(5.55a)

T [Jij(x� y);S] =
3

8⇡a3

I

S

eRij(x� y)dS(y)(5.55b)

S [Jij(x� y);S] =
3

4⇡a3

I

S

eKijk(x� y)dS(y)(5.55c)

where the integral is evaluated at the surface S and propagators of each force moments

are redefined as:

eJij(x� y) = Jij(x� y)(5.56a)

eRij(x� y) = Jik(x� y)"kjlnl(5.56b)

eKijk(x� y) =
1

2
[Jij(x� y)nk + Jik(x� y)nj](5.56c)

Although the assumption of uniform distribution of force moments might be too strong

for general geometry of particles, it works nicely for spherical particles as there is no reason

for force moments to deviate from uniform distribution due to the spherical symmetry.

Therefore, we obtain the expression of ambient flow in integral form, which works even

for closely touching particles:

(5.57)

u
0
i
(x)�u

1
i
(x) ⇡ 1

8⇡µ

NX

�=1,� 6=↵

n
F
⇥
Jij(x� x�)

⇤
F
�

j
+ T

⇥
Jij(x� x�)

⇤
T
�

j
+ S

⇥
Jij(x� x�)

⇤
S
�

jk

o
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Particularly, it can be shown that [see Appx. B.2.1]:

(5.58a) M
F

ij
(x) =

1

8⇡µ
F
⇥
Jij(x� y);S�

⇤
=

8
>><

>>:

⇣
1 + a

2

6
r2

⌘
Jij(x�x�

)

8⇡µ

��x� x�
�� > a

1

6⇡µa
�ij

��x� x�
��  a

(5.58b) M
T

ij
(x) =

1

8⇡µ
T
⇥
Jij(x� y);S�

⇤
=

8
>><

>>:

Rij(x�x�
)

8⇡µ

��x� x�
�� > a

1

8⇡µa3
"ijk

⇣
xk � x

�

k

⌘ ��x� x�
��  a

(5.58c) M
S

ijk
(x) =

1

8⇡µ
S
⇥
Jij(x� y);S�

⇤
=

8
>><

>>:

�
⇣
1 + a

2

10
r2

⌘
Kijk(x�x�

)

8⇡µ

��x� x�
�� > a

1
20
3 ⇡µa

3

⇣
xl � x

�

l

⌘
�lijk

��x� x�
��  a

5.2.6.2. the Faxén Laws in integral form. Similarly to previous derivations of the

Faxén Laws in di↵erential form [Sec. 5.2.3], the same argument still holds with all linear

functions F [ · ], T [ · ] and S [ · ] replaced with its integral forms [Eqn. 5.55], i.e.

(5.59)

8
>>>>>>><

>>>>>>>:

U
↵

i
� U

1
i
(x↵) = F [u0

i
(x);S↵] =

1

4⇡a2

I

S↵

u
0
i
(x)dS↵(x)

⌦
↵

i
�⌦

1
i
(x↵) = T [u0

i
(x);S↵] =

3

8⇡a3

I

S↵

"ijknju
0
k
(x)dS↵(x)

E
↵

ij
� E

1
ij
(x↵) = S[u0

i
(x);S↵] =

3

4⇡a3

I

S↵

1

2

⇥
u
0
i
(x)nj + u

0
j
(x)ni

⇤
dS↵(x)

where F [u0
i
(x);S↵], T [u0

i
(x);S↵] and S [u0

i
(x);S↵] are the same linear functions used in

Eqn. 5.57 but applied to the ambient flow u0(x) and evaluated at the surface of ↵-th
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particle S
↵ instead. As F [ · ], T [ · ] and S [ · ] are linear integral operators, the above

relations [Eqn. 5.59] is referred as the Faxén laws in integral form.

5.2.6.3. near-field mobility tensors. Then, plugging the expression of ambient flow

[Eqn. 5.57] into the Faxén laws in integral form [Eqn. 5.59], the mobility tensors [Eqn.

5.36] can be similarly defined in its integral form (↵ 6= �):

M↵�

UF
=
⇣
M

↵�

UF ij

⌘
=

1

8⇡µ

1

(4⇡a2)2

I

S↵

I

S�

eJij(x� y)dS↵dS�(5.60a)

M↵�

UT
=
⇣
M

↵�

UT ij

⌘
=

1

8⇡µ

1

4⇡a2
3

8⇡a3

I

S↵

I

S�

eRij(x� y)dS↵dS�(5.60b)

M↵�

US
=
⇣
M

↵�

US ijk

⌘
=

1

8⇡µ

1

4⇡a2
3

4⇡a3

I

S↵

I

S�

eKijk(x� y)dS↵dS�(5.60c)

M↵�

⌦T
=
⇣
M

↵�

⌦T ij

⌘
=

1

8⇡µ

✓
3

8⇡a3

◆2 I

S↵

I

S�

"iklnk
eRlj(x� y)dS↵dS�(5.60d)

M↵�

⌦S
=
⇣
M

↵�

⌦S ijk

⌘
=

1

8⇡µ

3

8⇡a3
3

4⇡a3

I

S↵

I

S�

"ilmnl
eKmjk(x� y)dS↵dS�(5.60e)

M↵�

ES
=
⇣
M

↵�

ES ijkl

⌘
=

1

8⇡µ

✓
3

4⇡a3

◆2

(5.60f)

I

S↵

I

S�

1

2

h
eKikl(x� y)nj + eKjkl(x� y)ni

i
dS↵dS�

For large separation distance (
��x↵ � x�

�� � 2a), the above integral expressions of mo-

bility tensors can be expanded, which reduce into the di↵erential form of mobility tensors

[Eqn. 5.36]. Here, we are particularly interested in cases where two particles overlap

(
��x↵ � x�

��  2a). The evaluations of those surface integrals are rather involved and the

details of calculation can be found at Appx. B.3.1. The explicit expressions of near-field
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mobility tensors can be found at Appx. B.4.3.

5.2.6.4. limiting behaviors. According to the explicit expressions of near-field mobility

tensors [Appx. B.4.3], we can show that all regularized expression reduce as the self-

mobilities [Appx. B.4.1] when the separation distance goes to zero:

lim
r!0

M
↵�

UF ij
=

1

6⇡µa
�ij(5.61a)

lim
r!0

M
↵�

UT ij
= 0(5.61b)

lim
r!0

M
↵�

US ijk
= 0(5.61c)

lim
r!0

M
↵�

⌦T ij
=

1

8⇡µa3
�ij(5.61d)

lim
r!0

M
↵�

⌦S ijk
= 0(5.61e)

lim
r!0

M
↵�

ES ijkl
=

3

20⇡µa3
�ijkl(5.61f)
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Also the near-field mobility tensors [Appx. B.4.3] and the far-field mobility tensors [Appx.

B.4.2] transit continuously at the particle interface:

lim
r!2a�

M
↵�

UF ij
= lim

r!2a+
M

↵�

UF ij
(5.62a)

lim
r!2a�

M
↵�

UT ij
= lim

r!2a+
M

↵�

UT ij
(5.62b)

lim
r!2a�

M
↵�

US ijk
= lim

r!2a+
M

↵�

US ijk
(5.62c)

lim
r!2a�

M
↵�

⌦T ij
= lim

r!2a+
M

↵�

⌦T ij
(5.62d)

lim
r!2a�

M
↵�

⌦S ijk
= lim

r!2a+
M

↵�

⌦S ijk
(5.62e)

lim
r!2a�

M
↵�

ES ijkl
= lim

r!2a+
M

↵�

ES ijkl
(5.62f)

Both far-field mobility tensors [Eqn. 5.35] and lubrication resistance tensors [Eqn.

5.51] become singular when two particles overlap. The Rotne-Prager-Yamakawa (RPY)

approximation [301,326] provides an intuitive way to remove those singularities for over-

lapping particles. It regularizes mobility tensors in a way that continuously transit from

pair mobilities to self mobilities when two particles approach each other. From a theo-

retical perspective, the RPY still truncates at finite force moments and is less accurate

comparing with the lubrication theory. From a numeric perspective, the RPY approxi-

mation is easier to implement and more robust for temporary particles overlapping in the

simulation.
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5.2.7. Full-range mobility tensors

With both near-field [Sec. 5.2.5 or Sec. 5.2.6] and far-field [Sec. 5.2.4] hydrodynamic

interactions treated separately, the Stokesian Dynamics (SD) basically proposed to com-

bine both descriptions together to get the hydrodynamic interactions over a full range of

particle separations [Fig. 5.2]. Mathematically, the hydrodynamic interactions in SD can

be written as:

(5.63) M = M1 + (R� �R1
�
)�1

where M is the full grand mobility tensor which contains both near-field and far-field

hydrodynamic interactions; M1 is the far-field grand mobility tensor [Eqn. 5.35, Appx.

B.4.2], which is a dense matrix as it’s constructed for every pairs of particles [Eqn. 5.36

and 5.37]; and R� is the near-field grand resistance tensor [Eqn. 5.50], which is a sparse

matrix as it only has nonzero elements for particle pairs within a cuto↵ distance dc [Eqn.

5.49]. The far-field grand resistance tensorR1
�
is the inverse of the far-field grand mobility

tensor M1, which is substracted from the near-field grand resistance tensor R� to avoid

double counting of far-field hydrodynamic interactions.

Depending on the problems of interest, the full grand mobility tensor M can be used

for solving mobility problems, i.e. the force moments acting on each particles (F↵
,T↵

,S↵)

are known and kinetic motions of each particles (U↵
,⌦↵

,E↵) are unknown:

(5.64)

0

BBBB@

U↵ �U1

⌦↵ �⌦1

E↵ � E1

1

CCCCA
= M

0

BBBB@

F↵

T↵

S↵

1

CCCCA



ar
ch
iv
e

225

Figure 5.2. A schematic showing the hydrodynamic interactions in Stoke-
sian Dynamics (SD). For an arbitrarily picked center particle (red), it inter-
acts with all neighboring particles (orange) within a cuto↵ distance d

c via
the near-field grand resistance tensor R�. The corresponding far-field grand
resistance tensor R1

�
is subtracted to avoid double counting of far-field hy-

drodynamic interactions. All of rest particles outside the cuto↵ distance
(blue) interact with the center particle by the far-field grand mobility ten-
sor M1. Overall, both near-field and far-field hydrodynamic interactions
can be combined together and described by a single e↵ective grand mobility
tensor M [Eqn. 5.63].

or resistance problems, i.e. the kinetic motions of each particles (U↵
,⌦↵

,E↵) are known

and the force moments acting on each particles (F↵
,T↵

,S↵) are unknown instead:

(5.65)

0

BBBB@

F↵

T↵

S↵

1

CCCCA
= M�1

0

BBBB@

U↵ �U1

⌦↵ �⌦1

E↵ � E1

1

CCCCA
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Please be aware that these are just theoretical formulations and do not consider the

performance of numeric implementations here [see Sec. 5.3.6 for discussion of e�cient nu-

meric implementations]. For example, it’s more common to use iterative solvers to avoid

direct inversion of the grand mobility tensor M in the resistance formulation.

5.3. Dynamic simulation of a population of Quincke rollers

With the understanding of a single Quincke roller dynamics discussed in Sec. 3.5

and appropriate description of hydrodynamic interactions (HI) between colloidal particles

developed in Sec. 5.2, we are ready to extend the description of a single Quincke roller

[Chap. 3] to a population of Quincke rollers based on their microscopic interactions.

5.3.1. Dynamics of Quincke rollers

As discussed in Sec. 3.6, a tilted electric dipole moment due to the balance between

surface and bulk fluxes of charge carriers is responsible for the steady rolling motion

of Quincke particles. Although the surface charge distribution of Quincke rollers is not

purely dipolar, especially when rollers are near the electrode surface [Sec. 3.8.2 and Fig.

3.5], the dominant e↵ect should still be contributed by its dipolar components of surface

charge distribution of each Quincke rollers. To leading order of approximation [122,123],

each particle e↵ectively carries an electric dipole moment resulting from the dominant

dipolar interfacial charge at each particle-fluid interface and evolves according to the

surface charge conservation equation [Eqn. 3.51]:

(5.66)
dP↵

dt
= ⌦↵ ⇥ (P↵ � �

1E↵)� 1

⌧P
mw

�
P↵ � �

0E↵
�
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where P↵ and ⌦↵ are the electric dipole moment and the angular velocity of the ↵-th

particle, E↵ = E0 + �E↵ is the electric field at ↵-th particle’s location, E0 is the external

electric field and �E↵ includes contributions from both the surrounding particles and

their image dipoles; �1 = 4⇡✏0a3
✏p�✏l
✏p+2✏l

and �
0 = 4⇡✏0a3

�p��l
�p+2�l

are the respective high-

frequency and low-frequency polarizability; ⌧P
mw

✏p+2✏l

�p+2�l
is the Maxwell-Wagner relaxation

time of dipole moments [120]. Please be noted that Eqn. 5.66 does not depend on the

fluid flow velocity, which essentially ignores possible electro-osmotic flow e↵ects on the

dynamics of surface charge transport.

5.3.2. Electrostatic interactions

Due to the dipolar surface charge distribution, each Quincke particle interacts with the

external electric fields:

(5.67) T↵

ext
= P↵ ⇥ E0

and also with its surrounding rollers via the screened dipole-dipole interaction:

(5.68) U
↵�

d
(r) = "d exp (�dr)


1

r3

�
P↵ ·P�

�
� 3

r5
(P↵ · r)

�
P� · r

��

and Coulombic interaction:

(5.69) U
↵�

q
(r) = "q

exp (�qr)
r
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where r= r↵ � r�, r = |r| and r↵ is the position of ↵-th particle; "q and 
�1

q
are the

interaction strength and the screening length of the Coulombic interaction, which is in-

cluded to account for steric interactions and possible net charges on each particles. Since

the concentration of AOT is 150 mM, the �1

q
is estimated [149] as 0.2a (500 nm), which

makes the Coulombic interaction highly short-ranged and ✏q is adjusted to ensure particles

do not overlap during simulations. The interaction strength and the screening length of

the dipole-dipole interaction are "d and 
�1

d
, respectively; ✏d = 1.0 and 

�1

d
⇡ 5a � 

�1

q

to ensure that each particle can interact with its neighbors about one particle diameter

away.

Note that the inter-particle forces and torques due to the un-screened dipole-dipole

interactions (Eqn. 5.68 without the exponential screening factor) can be computed by

taking derivatives with respect to particle positions:

F↵�

dd
=

3

r5

�
P↵ ·P�

�
r� 15

r7
(P↵ · r)

�
P� · r

�
r+

3

r5

⇥�
P� · r

�
P↵ + (P↵ · r)P�

⇤
(5.70a)

F�↵

dd
= �F↵�

dd
(5.70b)

T↵�

dd
= � 1

r3

�
P↵ ⇥P�

�
+

3

r5

�
P� · r

�
(P↵ ⇥ r)(5.71a)

T�↵

dd
= � 1

r3

�
P� ⇥P↵

�
+

3

r5
(P↵ · r)

�
P� ⇥ r

�
(5.71b)

As for the screened dipole-dipole interaction described in Eqn. 5.68, a simple chain rule

will yield similar force and torques expressions for the screened dipole-dipole interactions.
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5.3.3. Hydrodynamic interactions

The total force F↵ and the total torque T↵ acting on ↵-th particles can be obtained by

summing over all electrostatic interactions (EI). Then, the corresponding motion of each

particles are calculated via the mobility matrix formulation [Eqn. 5.64] based on the

configuration of N particles [121]:

(5.72)

0

BBBB@

U↵ �U1

⌦↵ �⌦1

�E1

1

CCCCA
= M

0

BBBB@

F↵

T↵

S↵

1

CCCCA

where each particles have been assumed to be rigid (E↵ = 0). Furthermore, for simplicity,

we ignore the contribution from stresslet as we do not intend to study rheological proper-

ties of the suspension and also will not consider very dense suspension in this work. Thus,

the mobility matrix formulation simplifies as:

(5.73)

0

B@
U↵ �U1

⌦↵ �⌦1

1

CA = M

0

B@
F↵

T↵

1

CA

whereU↵ and⌦↵ are the translational and angular velocity of ↵�th particle (↵ = 1 · · ·N),

respectively; F↵ and T↵ are the force and torque of ↵-th particle (↵ = 1 · · ·N), respec-

tively; M(r1, · · · , rN) is the grand mobility tensor, which maps the applied forces and

torques into the respective translational and angular velocities of each particles.

The explicit expressions of the mobility tensor in an unbound medium have been

derived via the multipole expansion method for well-separated pair of particles [Sec. 5.2.4]

[121, 302] or using the Rotne-Prager-Yamakawa (RPY) approximation for overlapping
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particles [Sec. 5.2.6] [300,301]. Furthermore, additional wall corrections of these mobility

tensors have also been derived for the case near an infinite no-slip boundary based on the

method of reflection [136,327,328]. In this work, the hydrodynamic interactions between

Quincke rollers are modelled with the Rotne-Prager-Blake tensor with wall corrections

[329–331].

5.3.4. Wall corrections

The existence of bottom electrode surface is an necessary component for creating the

rolling motion of Quincke particles [Sec. 3.6], which inevitably introduces additional

complexities due to boundary conditions of the system:

1) the no-slip boundary condition for hydrodynamic interactions (HI);

2) the equi-potential boundary condition for electrostatic interactions (EI).

Because of the simple planar geometry of the bottom conducting electrode, both boundary

e↵ects can be systematically included by adding wall corrections to both hydrodynamic

interactions and electrostatic interactions derived without any confinement.

5.3.4.1. hydrodynamic interactions. Firstly, the bottom electrode surface acts as a

non-slippery boundary which modifies the bulk mobility tensors. The most direct conse-

quence of these wall corrections is a non-zero torque-translation coupling, which enables

the self-propulsion of Quincke rollers. Depending on the separation distance between the

particle and the bottom electrode, the wall corrections of the mobility tensors can be

calculated via the method of reflection [136] or the lubrication theory [121,137]. In this

work, we follow the former approach to include the wall corrections.
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In the presence of a no-slip wall, the overall flow fields can be split as two parts:

(5.74) u(x)� u1(x) = uf (x) + uw(x)

where u and u1 are the total and background flow fields respectively, uf is the flow fields

induced by particles in an unconfined space [Eqn. 5.9] and uw is the additional flow fields

due to the presence of a no-slip wall in order to maintain the boundary condition:

(5.75) uf (x) + uw(x) = 0, 8x 2 wall

Analogous to the image charge construction to fulfill vanishing potential in electro-

statics at a conducting surface [129], such constraint of vanishing flow fields at no-slip

wall can be satisfied by introducing image stokeslets. Without loss of generality, let’s

assume that there is an infinite planar wall at z = 0, the location of particle is y and the

point of interests is x, then the free-space Green’s function is given by the Oseen tensor

[Eqn. 5.7]:

J(x� y) =
I

r
+

rr

r3

and the additional Green’s function due to the no-slip wall is [136,327]:

(5.76) J
w

ij
(x,y) = �Jij(x� y0) + h

2
Pjkr2

Jik(x� y0)� 2hPjkrRk
(Jil�l3)

where h = y3 is the height above the no-slip wall, y0 = y � 2hn is the location of image,

R = x � y0 and the projection operator P = I � 2nn. Thus, the Green’s function with
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the wall correction can be constructed as:

(5.77) J
ns

ij
(x,y) = Jij(x� y) + J

w

ij
(x,y)

such that Jns

ij
(x,y) = 0, 8x 2 wall. With this modified Green’s function which fulfills the

no-slip boundary condition, previous derivations for far-field mobility tensors [Sec. 5.2.4]

still hold and additional wall correction terms of free-space mobility tensors [Eqn. 5.36]

can be obtained by replacing the Oseen tensor J(x�y) with the no-slip Green’s function

Jns(x,y). The explicit expressions of those wall correction terms can be found at [136].

5.3.4.2. electrostatic interactions. Secondly, the bottom electrode is a conductor,

whose surface can be treated as an equi-potential surface. The surface charges carried by

Quincke particles induce excess charges on the electrode surface. If we only consider this

e↵ect to the dipolar level (the leading order e↵ect), such induced charges on the electrode

can be e↵ectively replaced by an image dipole P⇤. By the image charge method [129], an

electric dipole moment P positioned at (x, y, z) induces an image dipole P⇤ positioned at

(x, y,�z) which has reflected in-plane dipole moments and unchanged out-of-plane dipole

moments, i.e., P⇤ = (�Px,�Py, Pz). Here, we again assume that the electrode surface is

at z = 0. To include the e↵ect of image charges, the electric field in Eqn. 5.66 should

include contributions from the image dipoles. Besides, the calculation of electric forces

and torques exerted upon the particle [Eqn. 5.70 and 5.71] also should include the inter-

actions with image dipoles.
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5.3.5. Equations of motion

For a collection of particles immersed in a viscous, incompressible fluid, their behaviors

generally can be described by two equivalent theoretical approaches: the Fokker-Planck

(F-P) description and the Langevin description. As we are interested in the dynamic

behaviors of each particles, the particle-based Langevin description is preferred. Par-

ticularly, for low Reynolds number (Re) systems, the Langevin equation reduces as the

Brownian equation by considering the time interval beyond the momentum relaxation

time scale [279–283,332], which gives the equations of motion (EOM) as:

(5.78)
dr

dt
= MF+

p
2kBTM1/2W + kBTr · M

where r and F should be treat as general configurational and mechanical variables, respec-

tively. F can be any order of force density moments such as forces, torques and stresslets,

etc. And r denotes the corresponding order of configurational variables such as positions,

orientations and deformations, etc. Here, only r and F are explicitly written out for the

brevity of notations. The first term is the deterministic displacements due to external

force moments and M is the grand mobility tensor; The second term is the stochastic

Brownian displacements, where kB is the Boltzmann constant, T is the temperature and

W is a vector of independent and identically distributed (i.i.d.) standard Gaussian noise,

which is linearly transformed by the “square root” of the grand mobility tensor M1/2 to

fulfill the Fluctuation-Dissipation Theorem (FDT) [280,282]:

(5.79) Cov [�r(t)] = 2MkBT
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It requires that the covariance of hydrodynamically-correlated stochastic displace-

ments should be equal to the grand mobility tensor with a factor of 2kBT . And the third

term is the so-called thermal drift term [331,333], which involves the divergence of the

grand mobility tensor. For commonly used mobility tensors such as the Oseen tensors

[Eqn. 5.36] or the RPY tensors [Eqn. 5.60], they all possess the divergence-free property

so the thermal drift term vanishes for those choices of mobility tensors. However, for

systems under confinements such as the case near a planar wall [Sec. 5.3.4.1], the funda-

mental Green’s function has additional corrections [Eqn. 5.76], which may not preserve

the divergence-free property of the original Oseen tensor [Eqn. 5.7] and inclusion of the

thermal drift term is necessary in such scenarios.

5.3.6. Numeric implementations

In principle, with the grand mobility tensor constructed [Eqn. 5.63] and particle inter-

actions evaluated [Eqn. 5.67 5.68, 5.69], the EOM shown in Eqn. 5.78 is ready to be

numerically solved. However, if we look carefully at each terms in the EOM, it’s not a

trivial task to solve such an equation e�ciently and accurately:

(1) deterministic part MF

This is a deterministic contribution, which involves the multiplication between

the grand mobility tensor and the external forces vector. A simple implementa-

tion of direct matrix-vector multiplication inevitably introduces both time and

space complexity of O(N2).
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(2) stochastic part
p
2kBTM1/2W

This is a stochastic contribution as it requires generating correlated Gaussian

noises. There are e�cient algorithms for generating i.i.d. Gaussian random

variables [334] but it’s not easy to generate correlated Gaussian random variables.

A straightforward approach is to get the square root of targeted covariance via

the Cholesky decomposition [335], which involves O(N3) time complexity for a

direct implementation.

(3) thermal drift kBTr · M

This term involves the divergence of the mobility tensor, which is also an expen-

sive operation. As even a simple finite di↵erence approach, it requires additional

evaluations of the grand mobility tensor to get derivatives of the mobility tensor,

which introduces time complexity O(N2).

As discussed above, each terms in the EOM requires at least quadratic time complexity

for a direct numeric implementation, which prevents practical simulations of experimental

scale systems with usual computation powers nowadays. Recent works [303–305] have

successfully reduced the time complexity of the Stokesian Dynamics (SD) simulation as

O(N) by utilizing an Ewald-like formulation, which splits the hydrodynamic interac-

tion and correlated thermal fluctuations into long-ranged and short-ranged parts. This

progress makes the large scale simulation of colloidal suspension practical. However, to

avoid introducing complicated numerical techniques and obscuring the essential physics, I

will follow a more “brutal-force” approach [328,330,331], which is essentially still O(N2)

algorithm but works in practice by heavily utilizing the parallel computing capability of
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modern graphics processing unit (GPU).

5.3.6.1. deterministic part. The computation of deterministic part is a matrix-vector

multiplication, which can be easily paralleled as the full grand mobility tensor can be

decomposed into a block-wise form:

(5.80) M =

0

BBBB@

MUF MUT MUS

M⌦F M⌦T M⌦S

MEF MET EES

1

CCCCA

For each sub-block of the grand mobility tensor, the interactions between each pair

of particles are completely independent and all those computations can be launched si-

multaneously. However, all those mobility tensors should not be constructed explicitly

in the memory to avoid the limitation of memory size and, more importantly, avoid the

additional time cost for accessing data from the memory. Instead, a matrix-free imple-

mentation is more e�cient, which constructs the mobility tensors on-demand for each

pair of particles and no explicit arrays needed for storing the mobility tensors. To make

this point clear, a simple pseudo code excerpt which computes the MUF block is shown

below to demonstrate the typical code structure:

@parallel # launch each particle pairs (i,j) in parallel

for i,j in zip(range(N),range(N)):

# get relative distance from global position arrays of i and j particles

rij = r[i] - r[j]

# get forces acting on j particle from global force arrays
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force = force[j]

# compute M_{UF} between i and j particles on-the-fly

M_UF = mobility_UF(i,j,rij) # here, M_UF is only a 3x3 matrix

# (optional) wall corrections

M_UF+= mobility_UF_wall(i,j,rij)

# compute velocities of i particle due to j particle

velocity = M_UF * force

# accumulate into the global velocity array of i particle

U[i] += velocity

@kernel # kernel function executed on each parallel thread

def mobility_UF(self, i, j, rvec):

if (i==j):

# construct 3x3 self-mobility tensor M_UF of i particle

M_UF = self_mobility()

else:

# construct 3x3 pair-mobility tensor M_UF between i and j particles

M_UF = pair_mobility(rvec)

return M_UF

All other sub-blocks of the grand mobility tensor can be computed in parallel in a sim-

ilar way. There are many available open-source libraries for implementing parallelization,

such as OpenCL, CUDA, PyCUDA, Numba and Taichi, etc. All libraries metioned are

able to achieve the demand of parallelization here and the choice depends on the targeted
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computing architectures and also the familiarity with those packages. Please refer to the

documentations of those libraries for more details.

Besides, the full grand mobility tensor consist of both near-field and far-field parts

[Eqn. 5.63, which has di↵erent numeric characteristics. The far-field mobility tensors

M1 are constructed for every pair of particles [Eqn. 5.36], which result in a dense matrix

(⇠ O(N2) nonvanishing matrix elements); On the contrary, the near-filed resistance ten-

sors R� are only constructed for neighboring particles within a given cuto↵ distance d
c,

which result in a sparse matrix (⇠ O(6N) nonvanishing matrix elements). Therefore, nu-

meric solvers specifically optimized for dense or sparse matrix, for example, Basic Linear

Algebra Subprograms (BLAS) [336] and Linear Algebra Package (LAPACK) [337], can

be leveraged to further speed up the computation. A common practice is to tabulate nu-

meric values of near-field scalar resistance functions [Fig. 5.1] and construct the near-field

resistance tensors R� explicitly [305,319]. Because of the sparse nature of the near-field

resistance tensors, those tensors scale linearly with the number of particles and allow very

e�cient matrix construction and matrix operations such as Cholesky decomposition [338].

And, the full grand mobility tensor [Eqn. 5.63] can be rearranged as:

M = [I +M1 (R� �R1
�
)]�1 M1

and the corresponding deterministic velocities are:

U = [I +M1 (R� �R1
�
)]�1 M1F

http://www.netlib.org/blas/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
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which is equivalent to solve the following linear equations:

(5.81) [I +M1 (R� �R1
�
)]U = M1F

As discussed before, the multiplication with the dense far-field mobility tensor M1

is parallelizable. And the spare matrix R� � R1
�

can be tabulated and e�ciently con-

structed on the fly. To avoid direct matrix inversion, Eqn. 5.81 should be solved by

iterative linear solvers such as Generalized Minimal Residual Method (GMRES) [339].

Depending on the system configurations, appropriate preconditioning matrices [340] can

also be included for better convergence rate.

5.3.6.2. stochastic part. As the full grand mobility tensor M is still a dense matrix,

a direct Cholesky decomposition (⇠ O(N3)) of the mobility tensor (M1/2) to gener-

ate correlated fluctuations is very expensive and will severely limit the overall perfor-

mance of the simulation. Instead, iterative methods such as a Fixman method [341]

or a Lanczos-like method are proposed [342,343] to avoid a direct Cholesky decompo-

sition. Such iterative methods still involve application of the grand mobility tensor so

it’s still a O(N2) algorithm. However, given the fact that the application of the grand

mobility tensor is parallelizable and computation usually converge in a modest number of

iterations [319,330,331], such iterative methods generally provide a better performance

comparing with direct methods and are able to achieve performance in the same order of

the deterministic part.
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5.3.6.3. thermal drift. In principle, the thermal drift term is deterministic and requires

multiple evaluations of derivatives of the grand mobility tensor to get its divergence.

However, since there already exists stochastic term due to Brownian noise, the divergence

of the grand mobility tensor does not necessarily need to be accurate at each moment but

can be relaxed to converge to its true value in a statistically sense. That’s the so-called

Random Finite Di↵erence (RFD) approach:

(5.82) r · M ⇡ 1

✏

Dh
M(r+

✏

2
WD)�M(r� ✏

2
WD)

i
WD

E

where ✏ is a small parameter which depends on the desired accuracy, WD is a standard

Gaussian random vector representing random displacements of each particles and h·i de-

notes the statistical average. This is basically a random version of the FDM, which can

be proved to converge to the divergence of the grand mobility tensor on average [331] but

only requires two simple evaluations of the grand mobility tensor at each time step.

5.3.6.4. time integrators. With e�cient and accurate computation of all three terms

on the right hand side of the EOM [Eqn. 5.78], an appropriate time integrator is also

needed to evolve the whole system in time at desired accuracy. Because Eqn. 5.78 is

essentially a system of ordinary di↵erential equations, all numeric solvers developed for

ODE [344] in principle can be applied here although its stochastic nature makes the

proof of accuracy more di�cult. The design of e�cient and accurate numeric schemes is

not the focus of this work and there have been lots of discussion of temporal integrator

schemes [328,331,345]. Please refer to those works for more details. Unless explicitly

specified, a simple second-order Adams-Bashforth (A-B) method [346] is used to solve
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the EOM throughout this work:

(5.83) r(t+�t) = r(t) +�t


3

2
v(t)� 1

2
v(t��t)

�

where r(t) is the general configurational variables at time t, v(t) is the corresponding

general velocities (the sum of all three terms on the right hand side of Eqn. 5.78) at time

t and �t is the time step.

5.3.6.5. numeric implementations specific to Quincke particles. So far, all nu-

meric implementations discussed are centered around the EOM [Eqn. 5.78], which works

for a general Brownian Dynamics (BD) simulation. In the next, numeric implementa-

tions specific to the Quincke system will be elaborated. As mentioned before [Sec. 5.3.2],

electrostatic interactions also need to be taken into account for a population of Quincke

particles, which relies on a separate equation to describe the dynamics of its internal states

(electric dipole moments here [Sec. 5.3.1]). The strength and orientation of electric dipole

moments carried by each Quincke particles determine the dipole-dipole interactions and

how active forces enter the BD simulation, which ultimately leads to the self-propulsion

of Quincke particles. Therefore, a good description of the dynamics of internal states of

active particles is important for an accurate simulation of its collective behaviors. Here,

by extending the multipole model of a single Quincke particle [Eqn. 3.51] to many par-

ticles case, a simple model [Eqn. 5.66] is proposed for describing the time evolution of

electric dipole moments of each Quincke particles. Since Eqn. 5.66 is an ODE and also to

be consistent with the solver accuracy chose for solving the hydrodynamics [Eqn. 5.83],

a second order Runge-Kutta (R-K) method is used for solving the dynamics of electric
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dipole moments:

(5.84)
dP↵(t)

dt
= ⌦↵⇥ [P↵(t)� �

1E↵]� 1

⌧
P

MW

⇥
P↵(t)� �

0E↵
⇤
= f [P↵(t),⌦↵(t),E↵(t)]

where the time-dependence of dipole moments is written out explicitly and the corre-

sponding discretized form is:

(5.85)

P↵(t+�t
⇤) = P↵(t) +

1

2
�t

⇤ (k1 + k2)

k1 = f [P↵(t),⌦↵(t),E↵(t)]

k2 = f [P↵(t) +�t
⇤
k1,⌦

↵(t+�t
⇤),E↵(t+�t

⇤)]

The time step used for evolving the electric dipole moment �t
⇤ is usually set as 0.1�t

to better resolve the dynamics of electric dipole moments. To avoid executing expensive

computations multiple times during a single hydrodynamic time step �t [Eqn. 5.83], the

angular velocities and the electric fields are assumed to be constant during the evolution

of dipole moment, i.e. k2 ⇡ f [P↵(t) +�t
⇤
k1,⌦↵(t),E↵(t)].

With the electric dipole moments on each Quincke particles, the relevant electrostatic

interactions between Quincke particles [Sec. 5.3.2] are ready to be computed. There are

many techniques available for e�cient implementation of pairwise interaction calculations.

For example, by utilizing the neighbor-list or any fast solvers like Ewald summation [347],

PPPM [78], etc, the time cost for computing electrostatic interactions will not be the lim-

iting factor of the overall performance. Detailed implementation of those computation will

not be discussed in this work and please refer to common molecular dynamic simulation
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packages such as LAMMPS or HOOMD for examples.

After obtaining the external forces acting on each Quincke particles, the hydrodynamic

interactions can be computed via the procedures detailed for a general BD simulation

[Eqn. 5.78]. However, several features of Quincke particles system setup allow further

simplifications.

(1) Firstly, the e↵ect of stresslet is ignored considering the fact that the system is not

very dense and the interested phenomena are not related to rheological properties

of the whole system [Eqn. 5.73];

(2) Secondly, the packing fraction under consideration is usually about 10% and the

lubrication e↵ect is negligible; Thus, the deterministic velocities are simply given

by the far-field mobility tensors , i.e.

0

B@
U↵ �U1

⌦↵ �⌦1

1

CA = M1

0

B@
F↵

T↵

1

CA

(3) Thirdly, for a typical Quincke roller system, the active velocity (⇠ 1 mm/s) driven

by external electric fields is much large than the di↵usive velocity (⇠ 0.1 µm/s)

caused by the thermal energy. The Brownian noise is only important when the

roller just starts moving and is negligible once the roller picks up speed. For

simplicity, the uncorrelated Brownian noise is used instead:

⇠ ⇡
p
2kB�TM1/2

bulk
W



ar
ch
iv
e

244

where Mbulk is the diagonal grand mobility tensor in an unbound medium and

� ⇡ 0.1 is a factor which accounts for the di↵usion hindrance near the boundary

[348].

All those considerations greatly simplify the simulation complexity and enable simula-

tions close to experiments in both length and time scales. Relevant simulation parameters

are list in Table. 5.1 for reference. As a rough reference, a typical simulation performance

of 4096 particles on a Nvidia Tesla v100 GPU is about 50 time steps per second including

the overhead of I/O operations (still have lots of room of optimizations).

Parameters Symbols Values

unit of length Lc 1 µm
unit of time ⌧c 1 s
unit of mass Mc 1 mg

number of particles N 4096
radius of particles a 2.5 µ m

diameter of circular well D 1000 µm
applied electric field E0 ⇠ 2 V/µm

relative permittivity of the particle ✏p 3
relative permittivity of the liquid ✏l 2
electric conductivity of the particle �p 0 S/cm
electric conductivity of the liquid �l 2⇥ 10�8 S/cm
dynamic viscosity of the solution ⌘ 3 mPa · s

gap distance � 0.1 a
time step �t 0.1 - 0.001 ms

dipole steps per time step �t
⇤ 0.1 �t

Table 5.1. Table of simulation parameters for the system of a population of
Quincke rollers

5.4. Polar state reversal in suspension of Quincke rollers

Ensembles of interacting self-propelled particles, or active matter, exhibit a plethora

of remarkable collective phenomena which have been widely observed and studied in both
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biological and artificial systems [110,112,349–355]. Many synthetic active systems are

realized by ensembles of externally energized particles [264,267,329,356–359]. The onset

of globally correlated vortical states in active ensembles is associated with a spontaneous

symmetry breaking between two equally probably chiral states (characterized by clockwise

or counterclockwise rotations). Once the global state is formed, it is often robust and

stable [360,361]. Subsequent control of such polar states, however, remains elusive and

largely unexplored. Here we use a model system of colloidal rollers powered by the Quincke

electro-rotation mechanism [362,363] to demonstrate a control over the polar states in

active liquids.

5.4.1. Experimental observations

The experimental system consists of polystyrene spheres dispersed in a weakly conductive

liquid that are sandwiched between two ITO-coated glass slides and energized by a static

(DC) electric field [Fig. 5.3a]. The particles continuously roll with a typical speed of

v0 ⇠0.7 mm s�1, while energized by a uniform DC electric field E = 2.7 V µm�1. The

rollers experience hydrodynamic and electrostatic interactions that promote alignment of

their translational velocities [110]. As reported in [360], the rollers move randomly and

resemble the dynamics of an isotropic gas at low particle number densities. When the

density increases above a certain threshold, the rollers self-organize into a single stable

vortex [Fig. 5.3] when confined in a well [360]. Trajectories of Quincke rollers in the vortex

are nearly circular, and the average tangential velocity vt increases with the distance from

the center [Fig. 5.3a,b].
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Figure 5.3. a, A sketch of the experimental setup. Red and blue specks
illustrate induced positive and negative charges around a particle. Particles
develop a tilted dipole P and rotate with an angular velocity ⌦ resulting
in a translational velocity v along the surface. Particle trajectories in a
typical self-organized vortex of rollers are illustrated as an insert on the top
cell surface. The local particle density in the vortex is not uniform with
a noticeable depletion in the center of the well. b, Averaged tangential
velocities vt of particles in the roller vortex as a function of the distance
from the center. R is the radius of the well. The dash line shows the
averaged velocity v0 of an isolated roller measured in a dilute sample under
the same experimental conditions. The error bars are standard deviations of
the mean. c-e, Snapshots of superimposed velocity (arrows) and vorticity
(background color) fields of the rollers during a vortex reversal under a
temporal modulation of the activity. c, A stable initial roller vortex with
a clockwise rotation. d, Intermittent flocking after re-activation of the
system. Rollers initially move mostly towards the center of the cell. e,
A stable vortex with a counter-clockwise rotation evolved from the state
shown in d. The blue and red circles with an arrow illustrate the chirality
of the states. The scale bar is 0.2 mm. The field strength E = 2.7 V µm�1,
the particle area fraction � = 0.12.
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The roller vortex is robust and remains stable as long as the system is energized. Typ-

ical velocity and vorticity fields in a stable vortex are shown in Fig. 5.3c. Two possible

chiral states of the vortex, clockwise (CW) or counter-clockwise (CCW), are equally prob-

able, and the system spontaneously selects one in the course of the vortex self-assembly

from initially random distribution of particles. When the electric field is switched o↵,

particles come to rest within a time scale given by the Maxwell-Wagner relaxation time

⌧MW and viscous time scale ⌧⌫ that are both of the order of 1 ms for our system. The e↵ect

of Brownian motion on 4.8 µm particles used in the experiments is negligible, and the

system behaves as a granular counterpart- once stopped particles preserve their positions.

The particle arrangements appear to be random and the direction of the original vortex

cannot be easily identified. A cessation of the activity beyond ⌧MW = (✏p+2✏f)/(�p+2�f)

[Eqn. 3.53], where ✏p,f and �p,f are respective particle and fluid permittivities and conduc-

tivities, preserves the particle positions but erases their previous velocities, polarizations

and resets aligning forces. Once the system is re-energized by the same DC electric field,

particles initially move mostly toward the center of the well where the density is the lowest

[see Fig. 5.3d]. Eventually the rollers redistribute over the well and form a single vortex

with the direction of rotation opposite to the state preceding the cessation of the activity

[Fig. 5.3e].

The probability of the vortex reversal, P , achieves 1 in a wide range of explored

experimental parameters [see Fig. 5.4a-c]. The activity cessation time ⌧o↵ in a range from

10 ms up to 5 minutes has been probed and resulted in no significant e↵ect on the reversal

probability upon the re-energizing the system. This observation allows us to exclude the

e↵ects caused by remnant hydrodynamic flows or polarization. When ⌧o↵ is comparable
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to ⌧MW and ⌧⌫ , the vortex reversal is not triggered. Persistence of the rotation at small

⌧o↵ is supported by the incomplete depolarization of the particles and the inertia of a

macroscopic hydrodynamic flow.

The robustness of the chiral state reversal long after the termination of the activity

suggests the development of certain particle positional arrangements in the ensemble.

The reversal probability depends on the system diameter, D, and particle area fraction

� [see Fig. 5.4b, c]. For small diameters the persistence length of roller trajectories is

reduced by the high curvature of the walls and the vortex formation probability decreases.

The chiral state reversal is robust in a wide range of the particle number densities (0.04 <

� < 0.12). For dilute area fractions (� < 0.03), the inter-particle interactions are weak

and motion of the rollers is uncorrelated. At higher area fractions (� > 0.19), while the

vortex formation probability is high, the reversal probability decreases. This is because

the repulsion between the particles at high particle number density reduce the degree of

density variations in the system, leading to a more symmetric arrangement of particles.

5.4.2. Vortex reversal

While the observed chiral state reversal is a remarkably robust phenomenon, the formation

of a new polar state upon re-activation proceeds through a seemingly chaotic process. In

a stable vortex illustrated in Fig. 5.5a, all particles initially move CCW with an average

tangential velocity of vt = 0.82 mm s�1 and nearly zero normal velocity. When the

DC electric field is switched o↵, all particles cease to roll without significant alteration

of their relative positions set during the vortex rotation [Fig. 5.5b]. After the field is

restored, the particles restart motion in seemingly random directions [Fig. 5.5c]. Flocks
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Figure 5.4. a, Cycling of the vortex chiral state by a temporal termination
and subsequent restoration of the electric field. The black curve shows
normalized magnitude of the vorticity in the vortex center. Blue spans
indicate CW vortices, and red spans correspond to CCW vortices. The
vortex reversal is observed for every one of 240 cycles. The particle area
fraction � = 0.08. b, The reversal probability P as a function of the well
diameter D. The particle area fraction � = 0.07±0.01. P = Nr/Nt, where
Nr is the number of times the vortex reversal is observed during Nt activity
cycles. c, The reversal probability P (blue squares) as a function of the
particles area fraction � forD = 2 mm. Red circles illustrate the probability
of the vortex formation in the same system. A shaded area indicates the
area fractions � < 0.01 where no stable vortex is observed. Dash lines depict
P = 1. Error bars are standard deviations of the mean.

of rollers with spatially correlated velocities form [Fig. 5.5d,e ]. The center of the well

becomes the densest part of the system in a fraction of a second, and within the next few

seconds, particles redistribute into a new stable vortex with a depletion zone in the center

[Fig. 5.5f]. The process is characterized by the behavior of the average tangential and

normal components of the rollers velocities shown in Fig. 5.5g. At the very first moments

upon reactivation, the tangential motion of particles is mostly chaotic, manifested by the

emergence of small flocks of rollers moving in both CW and CCW directions. In contrast,

the normal component of the average roller velocities sharply increases at re-activation

and eventually subside to zero. While initial fractions of particles moving CCW and CW

are approximately the same, the CW fraction steadily grows with time and eventually
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plateaus with the average tangential velocity reaching vt = �0.82 mm s�1 (equal in

magnitude but opposite in the direction to the initial vortex).

5.4.3. Emergence of local asymmetry

The chirality of the collective motion can be similarly reversed in an annulus [Fig. 5.6a].

However, in contrast to the cylindrical confinement, particle traveling bands with a visible

local density gradient along the direction of motion are observed in these experiments.

The traveling density bands carry the information about the chirality of the polar state. It

is possible to identify the direction of the band motion preceding the activity termination

from a snapshot of the track when particles are at rest. In a stable CCW-rotating band

shown in Fig. 5.6a, the local particle density �loc increases slowly with an azimuth angle

toward the front of the band, and then abruptly drops at the frontier. When the system

is re-energized, the inter-particle repulsive interactions push rollers away from the high-

density regions resulting in a reversal of the band motion.

As the width of the track grows, the tangential density gradient (i.e., the band struc-

ture) dissolves and completely vanishes in the case of a well [Fig. 5.6b]. Nevertheless, the

reversal of the vortex chiral state upon temporal modulation of activity is preserved. It

suggests that a structural asymmetry reflected in the local particle positions is now hidden

by being redistributed over the whole ensemble. To unveil intrinsic asymmetries in the

positional arrangements of rollers in a vortex, we introduce two local order parameters

An and At.

(5.86) An,t = hFi · ui

n,t
ii.
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Figure 5.5. a-f, Snapshots of a roller vortex undergoing the chiral state
reversal. The electric field is reapplied at t = 0 s after a short cessation
of activity, ⌧o↵= 0.5 s. Rollers are shown as circles colored according to
the magnitude of the tangential velocity vt. a, Particles in a stable CCW
vortex. b, Particles are at rest when the electric field is o↵. c, Rollers
ensemble moments after the system is re-energized. d, Most of the particles
move towards the center of the well. CW (blue) and CCW (red) roller flocks
are formed. e, Particles redistribute over the well. The CW rotating flocks
start to dominate over those with CCW rotation. f, A stable CW vortex is
formed. The scale bar is 0.2 mm. g, Time evolution of the average normal
(blue) and tangential (red) velocities during the chiral state reversal. h,
Same process as in g is calculated in simulations [see Sec. 5.3]. Gray areas
indicate the state with the electric filed o↵.



ar
ch
iv
e

252

Here, Fi is a model repulsive unit force acting on the particle i from the the nearest

neighbors, and ui

n,t
are normal and tangential unit vectors respectively at the position of

the particle i. h...ii indicates averaging over all particles. We can simplify the averaging

over the neighbors by taking into account only a single nearest particle in Eq. 5.86.

Equipped with two order parameters we analyze the reversal process in a circular

track and a well. The non-zero value of At in the track during a stable collective motion

indicates the density gradient along the tangential direction, see Fig. 5.6c. Meanwhile, An

is zero within the noise level during the band motion, indicating the absence of normal

particle density gradients in a track. Both An and At remain nearly constant while the

system is in a stable dynamic state. The positive (or negative) value of At indicates a

CW (or CCW) vortex or band. In a well, the value of At also exhibits stable non-zero

values comparable in magnitude to those observed in narrow tracks, even though the

density bands are absent [Fig. 5.6d]. The local values of the At
i = Fi · ui

t
are uniformly

distributed over the whole system [see [242] Fig. S6] with no apparent clustering of the

At
i values that can be directly linked to the subsequent intermittent flocks.

5.4.4. Reversal mechanism

To elucidate the physics underlying the robust chiral state reversal in the ensemble of

active rollers, we develop a particle-based simulation model of the Quincke rollers sus-

pension [Sec. 5.3]. Following the work of [110,360], we similarly identify the essential

microscopic interactions. Instead of using the mean-field Fokker-Plank description for the

large-scale behaviors [110], we develop here the many-particle simulation by coupling the



ar
ch
iv
e

253

0.06
0.04
0.02
0.00

-0.02
-0.04

 0                 π/2                π

1.5

1.0

0.5

-1      0      1      2      3      4     

0.04

0.02

0.00

-0.02

-0.04
0   1   2

W (mm)

0.25
0.50
0.75
Well

θ

A
n
,
A

t

b c

d

a

t (s)

ϕ
lo

c/
ϕ

A
n
,
A

t

ϕloc/ϕ

t <0 t >0

Figure 5.6. a, Microscopic image illustrates the spatial distribution of rollers
in a circular track (only half of the track is shown) with a width W = 0.25
mm. Particles move CCW and form a stable traveling band along the track.
The black curve in the inner ring illustrate the average azimuthal particle
density. The background color of the inner ring indicates the direction of
initial rollers velocities at the moment when the DC electric field is re-
applied. The scale bar is 0.5 mm. b, Azimuthal density distribution of
rollers in circular tracks with outer diameter D = 2 mm and the width
W = 0.25 mm (black), 0.50 mm (purple), 0.75 mm (blue) and in the well
(red) as a function of azimuthal angle. Average particles area fraction
� = 0.12. A half of the track (or well) is shown. c-d, Evolutions of local
order parameters An (blue) and At (red) in a track of the width W = 0.25
mm (c) and a well with D = 2 mm (d) during a vortex reversal. The initial
direction of the vortex is CCW. The area fraction � = 0.12. Oscillations of
An at the initial stage of the band formation in a track correspond to the
reflections of density bands from the walls. A non-zero value of An reflects
the existence of a particle density gradient along the normal direction in
the well. Shaded areas indicate field-o↵ time.

Quincke rotation mechanism [110,122,123,362,363] [Sec. 3.6] with Stokesian Dynam-

ics [121,136,283,300–302,327,330] [Sec. 5.2]. The simulations correctly capture all

essential phenomenology observed in the roller ensemble upon temporal modulation of

the activity [Fig. 5.3h].

In ensembles of Quincke rollers both electrostatic interactions (EI) and hydrodynamic

interactions (HI) contribute to the velocity alignment processes resulting in a coherent

large-scale motion [110]. To identify the microscopic mechanisms driving the emergence
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of intrinsic positional order asymmetries, we investigate the behavior of the system when

either EI or HI are “turned o↵” in the simulations. Without EI, a stable vortex still forms

and has a structure similar to a regular vortex with both types of interactions present

[see Fig. 5.7a,b]. The absence of the EI does not a↵ect significantly the overall particle

distribution in the vortex as indicated by a radial particle density distribution [Fig. 5.7d]

and pair correlation function, g(r) [Fig. 5.7e]. The vortex also preserves the non-zero

local order parameter At indicating the presence of the local positional order asymmetries

[Fig. 5.7f]. However, the chiral state of each vortex was randomly selected upon each

re-activation. The results imply that, in general, the development of the local particle

arrangement asymmetries alone is not enough to support correlations of the subsequent

chiral states of the system upon re-activations.

In contrast, the absence of the long-range HI results in particle accumulation near the

boundary of the well [Fig. 5.7c-d]. The vortex forms, however, with most of the particles

densely packed near the boundary as indicated by multiple peaks of g(r) [see Fig. 5.7e].

Importantly, the order parameter At is at the noise level, see Fig. 5.7f, indicative that

the local asymmetries along the tangential direction disappear. The plots of the order

parameter At as the system undergoes activity-inactivity cycles demonstrate that in both

cases of truncated interactions no robust vortex reversal is observed, and the probability

of the reversal is close to 0.5 suggestive that each time the system randomly selects the

chiral state. It implies very specific roles of those two interactions. The HI are responsible

for the development of asymmetries in the local positional order within the vortex that

e↵ectively encode the chiral state. EI on the other hand facilitate a mechanism by which
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the particle distributions become relevant in the process of vortex formation. In par-

ticular, the locally asymmetric particles distributions in conjunction with EI dictate the

subsequent chiral states of the ensemble. When both ingredients (EI and HI) are present

the system exhibits remarkable reversibility of its chiral state upon temporal control of

the activity by the external field. Upon restarting the field, multiple small flocks arise in

random positions and chiral states due to the local fluctuations of the order parameter

(Fig. S2), and the system evolves towards the final polar state with the reversed chiral-

ity through the coalescence and annihilation of the counter-rotating flocks in a similar

fashion as the initial vortex. In a closely related system of ferromagnetic rollers carrying

permanent magnetic dipoles rotating together with the particles in a uniaxial alternating

magnetic field [264,361], while both systems share similar hydrodynamic interactions the

electrostatic repulsive interactions are replaced with time-averaged magnetic dipole-dipole

interactions of permanent rotating dipoles, and the reported phenomenon is absent - all

subsequent chiral states upon arbitrary reactivations are random.

5.5. Discussion and future works

In this chapter, we demonstrate that active liquids formed by Quincke particles are

capable of preserving their dynamic state information in seemingly random arrangements

of the particles. We show that a global vortex formed in an ensemble of Quincke rollers

leads to a globally correlated state with local inter-particle positional arrangement asym-

metries. Remarkably, a relatively weak level of the local arrangement asymmetry is enough

to prescribe the direction of the global vortex motion with high fidelity.
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Figure 5.7. a-c, Simulation snapshots of stable spontaneous vortices formed
under three di↵erent scenarios. a, Both electrostatic and hydrodynamic in-
teractions between rollers are included in the model. b, only hydrodynamic
interactions drive rollers dynamics. c, only electrostatic interactions con-
tribute to the collective dynamics. Only half of the wells are shown. The
scale bar is 0.2 mm. The particle area fraction � = 0.10 and the field
strength is E = 2.0 V µm�1. d, Radial variations of local particle density,
�loc, in a stable vortex formed with both electrostatic and hydrodynamic in-
teractions (blue), only hydrodynamic (orange), and only electrostatic (red)
interactions. r is the distance of particles from the center of the well. e, Po-
sitional pair correlation functions g(r) of particles in stable vortices shown
in a-c. The same color coding is used as in d. The black arrow in e points
to the identical location of a first peak for scenarios a and b. f, Local order
parameter At calculated for 10 activity cessation cycles. The ensemble does
not develop asymmetries in the positional order when only electrostatic
interactions govern collective dynamics of the rollers (red curve). Local
positional order asymmetries in the ensemble develop only for scenarios
including hydrodynamic interactions (blue, orange). Nevertheless, robust
reversal is observed only when both hydrodynamic and electrostatic inter-
actions are present(blue).

With the simulation model constructed from microscopic interactions, we isolate the

role of hydrodynamics as a driving force in the development of the local particle posi-

tional asymmetries and reveal the crucial role of electrostatic repulsive interactions as
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a key mechanism making the spatial distribution of particles relevant in the formation

of the subsequent chiral states of the ensemble upon reactivation. The dynamics of the

global chiral state reversal involve seemingly chaotic evolution of multiple flocks. Nev-

ertheless, the reversal process is robust, and a temporal control of the activity can be

exploited to systematically command the subsequent polar states of the active liquid.

We further demonstrate that the local particle arrangement asymmetries alone do not

result in polar state reversal, and, in general, isotropic short-range repulsions between

active units and velocity alignment interactions are necessary for the rise of correlations

between subsequent chiral states upon activity modulations.

Perhaps more generally, our results suggest that regardless of the dimension of the

problem seemingly disordered dynamic patterns tend to develop local structural asymme-

tries in response to competing repulsive and aligning interactions between active particles,

and within di↵usion timescale, these asymmetries could be exploited to systematically

control self-organized dynamic states with the aid of temporal modulation of activity.

As a physical example of the general framework [Eqn. 5.1] for describing active par-

ticles with both external and internal DOFs, this chapter demonstrates that how to con-

struct the functional forms of the usually phenomenological interaction functions from rel-

evant microscopic interactions. By embedding the rolling motion mechanism of Quincke

particles [Sec. 3.6] into the Stokesian Dynamics, we developed a particle-based model

which includes dynamics of both external and internal degrees of freedom. More gen-

erally, the self-propulsion mechanism and the interaction models, in principle, can be

replaced with any other active-driving mechanisms and relevant interactions of the in-

terested systems. For example, the dynamic equations describing the internal DOF of
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rolling Quincke particles [Eqn. 5.3.1] can to extended to include the dynamics in the

oscillation regime [Sec. 3.10], which enables studying collective behaviors of a population

of oscillating Quincke particles.
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CHAPTER 6

Collective Behaviors of Magnetic Spinners∗

6.1. Introduction

Active colloidal particles typically perform mechanical motions in response to external

stimuli from environment [364–368]. The constant injection of external energy signals

the non-equilibrium nature of those active particles, where diverse steady-state collective

behaviors sharply contrast to those commonly seen in the equilibrium systems have been

reported [369–373]. So far, most of the works about active colloidal particles have been

focusing on the active colloidal particles themselves and very limited attention has been

put on the medium which mediates the interactions between active colloidal particles.

Since almost all collective behaviors of active colloidal particles are studied in an aqueous

environment, this inevitable introduces hydrodynamic interactions (HI) between parti-

cles [159,271], which may or may not be important for the observed collective behaviors

depending on the system of interests. However, it should be realized that the HI in such

active colloidal particle systems is a common cornerstone for understanding its resulting

collective behaviors. Due to the constant input of external energy in active systems, the

mechanical motions of active units also constantly disturb the surrounding aqueous envi-

ronment, which induce active flows absent in usual passive fluids. In recent years, active

fluids composed of self-propelling particles [374,375] with broken time reversal symmetry

∗This chapter originates from the unpublished collaborative e↵orts with Dr. Michael Wang and Prof.
Paul M. Chaikin at New York University, who conducted all experiment measurements in this chapter.
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(TRS) have been attracting increasing interests due to possible new hydrodynamic e↵ects.

From a theoretical perspective, the broken TRS permits the emergence of the so-called

odd viscosity [376] and it’s interesting to extend conventional hydrodynamic models to

explore possible physical e↵ects of odd viscosity [377–380]; Experimentally, it’s also worth

designing an active system [381,382], which isolate hydrodynamic interactions from other

interfering interactions entirely with controllable activity for a systematical investigation

of the e↵ects due to induced active flows.

Among all possible candidates of active colloidal particles, the colloid particle em-

bedded with a tiny ferromagnetic component driven by external magnetic fields seem an

ideal model system [319, 329, 383] for studying active flows. With carefully designed

microscopic interactions, the magnetostatic and electrostatic interactions are essentially

negligible comparing with the thermal energy [329], which leaves the hydrodynamic in-

teractions as the solely dominant interaction in the system. The magnetic responsiveness

of particles allows continuous tuning of the system activity level via an external magnetic

field, which enables exploring how the hydrodynamic interactions depend on the system

activity level.

In this chapter, a controllable e↵ective gravity is purposefully introduced into a sus-

pension of magnetic colloidal particles driven by a rotating external magnetic field. The

“active” hydrodynamic interactions compete with such an e↵ective gravity, which results

in a sedimentation of active colloidal particles depending on its activity level [Sec. 6.2].

The traditional Stokesian Dynamics (SD) [Sec. 5.2] turns out to be inadequate for de-

scribing the observed collective motions due to active flows. By realizing the experimental
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system has a broken TRS, the odd viscosity is incorporated into the existing SD frame-

work [Sec. 6.3]. With the extended SD with odd viscosity, a simulation model for a

population of magnetic spinners is developed to understand the experimental phenomena

[Sec. 6.4]. In the end, this chapter concludes with a brief summary and discussion about

open questions [Sec. 6.5].

6.2. Sedimentation of magnetic spinners

6.2.1. Experiment setup

The experiment is conducted with polymer colloids with radius about 1 µm with an

embedded haematite cube [384], which gives each colloids a small permanent magnetic

moment m, allowing the manipulations of particles via an external magnetic field. The

inter-particle magnetic interactions are small comparing with thermal energy (< 0.1 kBT )

[329]. A suspension of such magnetic colloidal particles is prepared inside a chamber,

which is slightly tilted by an angle ✓ allowing the sedimentation [385] of particles under

gravity [Fig. 6.1]. The proposed experimental setup is very similar to the previous

work [386] except the field directions and the inclination angle [see Table 6.1]. Here,

the external magnetic field is rotating in the plane [Fig. 6.1 B], which drives mechanical

rotations of magnetic colloidal particles with angular velocity ! perpendicular to the

chamber floor. Besides, the inclination angle is deliberately chosen to be very small (about

2�) [Fig. 6.1 C], which makes the e↵ective weight of particles comparable to the thermal

energy (kBT/mg sin ✓ ⇠ 2.7). The active rotation of magnetic colloidal particles in our

experiment does not directly generate translational motions like Quincke particles [110] or

magnetic rollers [256,329]. This mitigates the interference of boundary e↵ects due to the
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surrounding chamber walls. Thus, the driven magnetic colloidal particles interacts with

each other with a rather clean active rotational flows. If there are any significant e↵ects

due to the active flows induced by mechanical rotations of magnetic colloidal particles,

the small e↵ective particle weight acts as a sensitive probe for detecting such e↵ects.

By measuring the steady particle distribution along the settling direction, it allows the

quantitative study of hydrodynamic interactions in such active fluids.

A B

C

x

y

Figure 6.1. Sedimentation experiments of magnetic colloidal particles. A,
the top view experimental optical microscope image of the magnetic spin-
ners suspension (courtesy of Dr. Michael Wang, NYU). B and C are
schematics of zoom-in views of a single magnetic spinner from the top and
side views, respectively. B, the top view schematic of a settling colloidal
particle (light gray) with embedded ferromagnetic components (orange),
which is driven by a rotating external magnetic field, rotates with angular
velocity !. C, the side view schematic of the same magnetic colloidal parti-
cle, which settles above an inclined floor of angle ✓ with an e↵ective gravity
g sin ✓, where g is the acceleration of gravity.
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Parameters Symbols Values

radius of particles a 1 µm

gravity g 9.8 m/s2

estimated particle weight mg ⇠ 4.41⇥ 10�14 N
inclination angle ✓ 2�

e↵ective particle weight mg sin ✓ ⇠ 1.54⇥ 10�15 N
field frequency f 0� 5 Hz

dynamic viscosity of the solution ⌘ ⇠ 0.89� 1.8 mPa · s
estimated magnetic torques Tm = 8⇡⌘a3! ⇠ 1.5791⇥ 10�19 N ·m

gravitational height kBT/mg cos ✓ ⇠ 1.094 µm

characteristic di↵usive time ⌧D = 6⇡⌘a3/kBT ⇠ 4.59 s
temperature T 300 K

Table 6.1. Table of experiment parameters for the sedimentation of mag-
netic spinners

6.2.2. Experiment observations

The rotation speed of magnetic spinners is directly controlled by the frequency of external

magnetic fields [329], which enables a continuous tuning of system activity level. The

sedimentation experiments of magnetic spinners are conducted under the influence of

a rotating magnetic field with frequency 0 - 5 Hz and the corresponding area fraction

distribution of magnetic spinners is shown in Fig. 6.2 A. Interestingly, the experimental

measurements show a significant deviation from the equilibrium distribution of passive

magnetic spinners with a higher field frequency. By comparing the experimental images

of the equilibrium suspension [Fig. 6.2 B] and driven suspension [Fig. 6.2 C], it shows

clearly that the driven suspension is much more spread upwards against the e↵ective

gravity, which signifies possible extra repulsive interactions between particles.
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A B

C

Figure 6.2. Density profiles of settled magnetic colloidal particles with var-
ious external magnetic field frequency (courtesy of Dr. Michael Wang,
NYU). A, the area fraction of magnetic spinners driven by a rotating mag-
netic field of frequency 0 - 5 Hz as a function of height. B and C are
respective representative experimental optical microscope images of passive
magnetic spinners and magnetic spinners driven by a rotating magnetic field
of frequency 5 Hz.

Such experimental results are particularly interesting from a physics point of view.

For an equilibrium system, hydrodynamic interactions do not a↵ect its thermodynamic

equilibrium states as any equation of states of equilibrium systems [387, 388] do not

depend on HI. For a non-equilibrium system, there is no general theoretical framework

yet. However, the experimental system here is clearly out-of-equilibrium, whose results

indicate that the HI of those active colloidal particles clearly modify the steady state of

the system. The active flows create certain e↵ective repulsion between particles, which

actually support the weight of particles and creates a large spread of density distribution
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[Fig. 6.2 B and C]. It is of great interests to understand how those active flows induced

by driven magnetic spinners change the steady states of system, as it might provide some

insights for uncovering the principles of non-equilibrium systems.

As discussed before, such magnetic spinners primarily interact with HI, which makes

the Stokesian Dynamics [Sec. 5.2] an ideal numeric method for simulating a suspension of

magnetic spinners. As a starting point, all magnetic spinners are assumed to be rotating

with the same frequency as the external magnetic field. Then, each magnetic spinner is

approximately driven by a magnetic torque Tm = 8⇡µa3!. Besides, each spinners also

feels the same e↵ective gravity Fg = mg sin ✓, where m is the mass of colloidal parti-

cle. These are essentially all external forces and torques of the system, combining with

appropriate hard-core interactions to avoid overlapping, the usual SD simulations are per-

formed. Unfortunately, these simulations are not able to reproduce the significant upward

spread of magnetic spinners and stay pretty close to equilibrium particle distribution even

for the highest field frequency investigated. By realizing that all magnetic spinners are

rotating in a prescribed direction determined by the external magnetic field, the system

actually has a broken time reversal symmetry (TRS), which motivates the development

of an extended Stokesian Dynamics with odd viscosity presented in the next section.

6.3. Stokesian Dynamics with odd viscosity

In this section, I will develop an extended Stokesian Dynamics (SD) formalism [Sec.

5.2], which takes into account of the e↵ects from odd viscosity.
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6.3.1. Odd viscosity

First, the concept of odd viscosity will be briefly introduced [376,389–392]. Similarly to

the case of linear elastic solids [Sec.4.3.1.5], the general linear constitutive relation of a

fluid can be written as:

(6.1) �ij = �p�ij + µijklrluk

where p is the hydrostatic pressure and µ is a general fourth order viscosity tensor. For

a conventional homogeneous and isotropic passive fluid, the system has both rotational

symmetry and time-reversal symmetry. Based on the Curie’s Symmetry Principle (CSP)

[393], the spatial symmetry property simplifies the general viscosity tensor as [394]:

(6.2) µ
e

ijkl
= µb�ij�kl + µs(�ik�jl + �jk�il)

where µb and µs are the bulk and shear viscosity, respectively. Such viscosity tensor µe

ijkl

only depends on two independent material properties, which have analogous roles of bulk

and shear modulus in linear elastic solids [Eqn. 4.14].

Furthermore, symmetry properties of the system enforce three important symmetry

relations, which the viscosity tensor µe

ijkl
must fulfill. Firstly, the rotational invariance of

system requires that µe

ijkl
= µ

e

ijlk
; Secondly, the conservation of local angular momentum

(passive fluid) requires that the stress tensor to be symmetric [see Sec. 4.4.3.2], i.e.

�ij = �ji, which enforces that µe

ijkl
= µ

e

jikl
; Thirdly, according to the Onsager reciprocal

relations (ORR) [395,396], the time-reversal symmetry requires that µ
e

ijkl
= µ

e

klij
. It’s

easy to verify that the above viscosity µ
e

ijkl
[Eqn. 6.2] fulfill all three symmetry relations.
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The superscript e indicates that it’s even under the time-reversal transformation and the

corresponding viscosity is therefore termed as even viscosity.

As an extension of the above symmetry considerations, Avron et al. [376] considers

the system with an external magnetic field B. The time-reversal symmetry states that the

particles consisting the system should retrace its former paths when their velocities are

reversed. However, for example, when there is an magnetic field, the external magnetic

field also needs to be reversed (-B) due to the fact that the Lorentz force [129] couples

the velocity and the magnetic fields (F = qu⇥B). Therefore, ORR needs to be modified

for the case with a broken time reversal symmetry [394], which yields that

(6.3) µ
o

ijkl
= �µ

o

klij

where the superscript o indicates that the viscosity is odd under the time-reversal trans-

formation and µ
o

ijkl
is thus termed as odd viscosity.

For the spatial symmetry, previous considerations still hold, which require that µo

ijkl
=

µ
o

ijlk
and µ

o

ijkl
= µ

o

jikl
. By considering the rotational degrees of freedom of microscopic

particles and starting from a microscopic Hamiltonian, Lubensky et al. [390] derive the

general form of odd viscosity in a 3D system as:

(6.4) µ
o

ijkl
= `n("jln�ik + "iln�jk + "ikn�jl + "jkn�il)

where "ijk is the 3D Levi-Civita symbol and �ij is the Kronecker delta. And ` is the

angular momentum density of constituting particles. It can be directly verified that all

three symmetric relations are fulfilled. For a quasi-2D system where `= µoẑ, the above
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general expression in 3D can be simplified as:

(6.5) µ
o

ijkl
= µo(✏jl�ik + ✏il�jk + ✏ik�jl + ✏jk�il)

where "ij is the 2D Levi-Civita symbol, i.e. "ij = "ijz. In this case, only a single scalar

odd viscosity µo is needed to determine the odd viscosity tensor.

Finally, for a system containing both even and odd interactions under the time-reversal

transformation, the general linear constitutive relation can be written as:

(6.6) �ij = �p�ij +
�
µ
e

ijkl
+ µ

o

ijkl

�
rluk

where even and odd viscosity are given by Eqn. 6.2 and 6.4, respectively.

6.3.2. Odd Stokes’ equations

With the constitutive relation of the fluid with both even and odd viscosity [Eqn. 6.6],

the Stokes’ equations are ready to be derived via the balance of linear momentum. For

simplicity, we only consider quasi-2D systems here and the overall stress tensor is given

as:

(6.7)
�ij = �p�ij + (µe

ijkl
+ µ

o

ijkl
)rluk = �p�ij + µbrkuk�ij + µs (rjui +riuj)

+ µo ("jlrlui + "ilrluj +ri"jlul +rj"ilul)

Taking the divergence of the stress tensor gives that

(6.8) �ri [p� (µb + µs)rjuj + µo✏jlrjul] + µsr2
ui + µo✏ilrlrjuj + µo✏ilr2

ul = 0
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For an incompressible fluid, rjuj = 0, and it gives that the Stokes’ equations with odd

viscosity as

(6.9) �ri (p+ µo✏jlrjul) + µsr2
ui + µo✏ilr2

ul = 0

The above equations can be expressed in an equivalent matrix form as:

(6.10)

0

BBBB@

µs µo 0

�µo µs 0

0 0 µs

1

CCCCA
r2u = rp̃+ f

where the modified pressure p̃ = p+µo✏jlrjul and possible external volumetric forces f are

also added into the equation. Note that the above equation reduces as the conventional

Stokes’ equation [Eqn. 5.6] when µo = 0 as expected and the odd viscosity µo emerges

only at o↵-diagonal elements which introduces coupling between x and y components.

6.3.3. Odd Oseen tensor

As shown in Eqn. 6.10, the Stokes’ equations with odd viscosity are still linear equations.

Similarly to the Oseen tensor [Eqn. 5.7] derived for the usual Stokes’ equations with

only even viscosity, we would like to derive the corresponding Green’s function of the

generalized Stokes’ equations with odd viscosity, which starts by consider a point force
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�F applied at position r [134]:

(6.11)

0

BBBB@

µs µo 0

�µo µs 0

0 0 µs

1

CCCCA
r2u = rp� F�(r)

Please note that the modified pressure p̃ [Eqn. 6.10] is denoted as p for brevity. The

linearity of the Stokes’ equation requires that both the pressure p and flow field u should

be proportional to the applied point force F. Since p(r) is a scalar field and u(r) is a

vector field, they can be expressed as:

(6.12a) p(r) = Pj(r)Fj

(6.12b) u(r) = Gij(r)Fj

where Pi(r) and Gij(r) are the Green’s function of the pressure field and flow field,

respectively.

6.3.3.1. Green’s function in k-space. As the problem is easier to solve in the k-space,

the Fourier transformation is applied to both the pressure and flow field:

(6.13a) u(r) = F�1 [bu(k)] = 1

(2⇡)3

Z

R3

dkbu(k)eik·r

(6.13b) p(r) = F�1 [bp(k)] = 1

(2⇡)3

Z

R3

dkbp(k)eik·r
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where F�1 is the inverse Fourier transformation, k is the wave vector and bu(k) and bp(k)

are the corresponding pressure and flow field in the k-space. Plugging above expressions

back into the Stokes’ equations [Eqn. 6.11] yields that

(6.14) � µijk
2buj(k) = ikibp(k)� Fi

where the second order viscosity matrix µij is defined as:

(6.15) µij =

0

BBBB@

µs µo 0

�µo µs 0

0 0 µs

1

CCCCA

Also note that the k-space expressions of Eqn. 6.12 are:

bp(k) = bPj(k)Fj, bu(k) = bGij(k)Fj

which enables the elimination of external forces Fi:

�k
2
µij

bGjk(k)Fk = iki
bPj(k)Fj � �ijFj

i.e.

(6.16) � k
2
µik

bGkj(k) = iki
bPj(k)� �ij

The incompressibility condition (r · u = 0) in the k-space reads as

(6.17) bGij(k)ki = 0
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Taking the inner product of Eqn. 6.16 with ki yields that

�k
2
µikki

bGkj(k) = �k
2
µ0"ikki

bGkj(k) = ik
2 bPj(k)� kj

It gives the Green’s function of the pressure field in the k-space as:

(6.18) bPj(k) = � ikj

k2
+ iµ0"ikki

bGkj(k)

where µij = µs�ij + µo"ij by definition [Eqn. 6.15] and the second term is the additional

pressure contribution due to the odd viscosity. Plugging the above expression back into

Eqn. 6.16 gives that:

(6.19)

0

BBBB@

µs + µo

kxky

k2
µo

⇣
1� k

2
x

k2

⌘
0

µo(�1 +
k
2
y

k2
) µs � µo

kykx

k2
0

µo

kykz

k2
�µo

kxkz
k2

µs

1

CCCCA
bGkj(k) = �kikj

k4
+
�ij

k2

The right-hand side is exactly the k-space expression of the Oseen tensor [311] and the

matrix on the left-hand side can be directly inverted, which gives the k-space expression

of the Green’s function of the flow field as:

(6.20) bGij(k) =
1

µs

1

⌃2(k)

0

BBBB@

k
2
y+k

2
z

k4
�kxky

k4
� �

k
2
z

k4
�kxkz

k4
+ �

kykz

k4

�kxky

k4
+ �

k
2
z

k4
k
2
x+k

2
z

k4
�kykz

k4
� �

kxkz
k4

�kxkz
k4

� �
kykz

k4
�kykz

k4
+ �

kxkz
k4

k
2
x+k

2
y

k4

1

CCCCA

where two auxiliary variables are introduced as:

(6.21) ⌃
2(k) = 1 + �

2
k
2

z

k2
, � =

µo

µs
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Particularly, the dimensionless number � is the ratio between odd viscosity µo and

even viscosity µs, which characterizes the e↵ects due to the odd viscosity. Moreover, as

any second order tensor can be decomposed into symmetric and anti-symmetric parts,

the above k-space Green’s function can be split as:

(6.22a) bGij(k) = bG(ij)(k) + bG[ij](k)

(6.22b) bG(ij)(k) =
1

µs

1

⌃2(k)

✓
�kikj

k4
+
�ij

k2

◆

(6.22c) bG[ij](k) = � 1

µs

�

⌃2(k)
"ijkkk

kz

k4

where indices in parentheses and brackets indicate symmetrizing and anti-symmetrizing

the orginal tensor, respectively.

6.3.3.2. Green’s function in real-space. With the k-space Green’s function for both

the pressure field and flow field [Eqn. 6.18 and 6.20], the corresponding real-space expres-

sions can be obtained via the inverse Fourier transformation, i.e.

(6.23) Gij(r) = F�1

h
bGij(k)

i
, Pi(r) = F�1

h
bPi(k)

i

However, the additional k-dependence introduced by ⌃
2(k) for non-vanishing odd

viscosity makes the exact analytical calculation di�cult. For simplicity, we focused on

the fluid with weak activity (this approximation is also supported by actual experimen-

tal measurements [397]). Then, the viscosity ratio � serves as a natural parameter to

characterize the activity level of the system. For the weak activity limit, i.e. � ! 0, the
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inverse of ⌃2(k) can be expanded as:

(6.24)
1

⌃2(k)
=

1

1 + �2 k
2
z

k2

=
1X

n=0

(�1)n
✓
k
2

z

k2
�
2

◆n

= 1� k
2

z

k2
�
2 +O(�4)

Then, the expansions of the symmetric and anti-symmetric parts of the k-space Green’s

function [Eqn. 6.22] can be written as:

(6.25a) bG(ij)(k) =
1

µs

1X

n=0

(�1)n
✓
k
2

z

k2
�
2

◆n✓
�kikj

k4
+
�ij

k2

◆
=
h
bG(0)

(ij)
+ bG(2)

(ij)

i
+O(�4)

(6.25b) bG[ij](k) = � �

µs

1X

n=0

(�1)n
✓
k
2

z

k2
�
2

◆n✓
"ijkkk

kz

k4

◆
=
h
bG(1)

[ij]
+ bG(3)

[ij]

i
+O(�5)

where n-th order expansion of the symmetric and anti-symmetric parts are defined as:

(6.26a) bG(2n)

(ij)
(k) =

(�1)n

µs

✓
k
2

z

k2
�
2

◆n✓
�kikj

k4
+
�ij

k2

◆
, n 2 N

(6.26b) bG(2n+1)

[ij]
(k) = ��(�1)n

µs

✓
k
2

z

k2
�
2

◆n✓
"ijk

kkkz

k4

◆
, n 2 N

where N is the set of natural numbers. The inverse Fourier transformation of the lowest

order expressions is easy to compute:

(6.27a) G
(0)

(ij)
(r) = F�1

h
bG(0)

(ij)
(k)

i
=

1

µs

F�1


�kikj

k4
+
�ij

k2

�
=

1

8⇡µs

✓
�ij

r
+

rirj

r3

◆

(6.27b) G
(1)

[ij]
(r) = F�1

h
bG(1)

[ij]
(k)

i
= � 1

µs

F�1


"ijk

kkkz

k4

�
= � �

8⇡µs

"ijk

✓
�k3

r
� rkr3

r3

◆
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Note the expression of Oseen tensor [Eqn. 5.7], the above expressions can be rewritten

as:

(6.28a) G
(0)

(ij)
(r) =

1

8⇡µs

Jij(r)

(6.28b) G
(1)

[ij]
(r) = � �

8⇡µs

"ijk�l3

✓
�kl

r
� rkrl

r3

◆
= � �

8⇡µs

"ijk�l3J
s

kl
(r) = � �

8⇡µs

J
o

ij
(r)

where Jij is the usual Oseen tensor and a similar odd Oseen tensor is defined as:

(6.29) J
o

ij
(r) = "ijk�l3J

s

kl
(r) = "ijk�l3

✓
�kl

r
� rkrl

r3

◆

For convenience, an auxiliary symmetric tensor Js

ij
(r) is also defined, which only di↵ers

with the symmetric Oseen tensor J by a minus sign of the anisotropic term:

(6.30) J
s

ij
(r) =

�ij

r
� rirj

r3

As for the higher order terms, it can be constructed from the lower order solutions by

noting the following properties:

(6.31)
@
2

@z2
f(r) =

1

(2⇡)3

Z
dk(�k

2

z
) bf(k)eik·r

(6.32) r2
f(r) =

1

(2⇡)3

Z
dk(�k

2) bf(k)eik·r
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Therefore, the next order solutions can be constructed as:

(6.33a) G
(2)

(ij)
(r) = ��2F�1


k
2

z

k2

bG(0)

(ij)
(k)

�
= ��2

@
2

@z2
r�2

h
F�1

h
bG(0)

(ij)
(k)

ii

(6.33b) G
(3)

[ij]
(r) = ��2F�1


k
2

z

k2

bG(1)

[ij]
(k)

�
= ��2

@
2

@z2
r�2

h
F�1

h
bG(1)

[ij])
(k)

ii

where r�2 is the inverse Laplace operator defined as:

(6.34) r�2 =

Z

R3

dr0G(r� r0), G(r) = � 1

4⇡r

and G(r) is the Green’s function of the 3D Laplace’s equation. Also please be aware that

the inverse Laplace operator r�2 is spherically symmetric but the double derivative in z-

direction @
2

@z2
is not. Thus, it’s important to choose a proper order between two operators

to maintain the desired symmetry for intermediate steps.

In the next, both symmetric and anti-symmetric parts
⇣
G

(2)

(ij)
(r) and G

(3)

[ij]
(r)

⌘
will be

calculated as an illustration and higher order terms can be computed in a similar manner.

• the symmetric part G(2)

(ij)
(r)

For the symmetric part, the inverse Laplace operator can be computed as:

(6.35)

r�2

h
F�1

h
G

(0)

(ij)

ii
=

1

8⇡µs

r�2


�ij

r
+

rirj

r3

�

=
1

8⇡µs

Z

R3

dr0G(r� r0)

✓
�ij

r0
+

r
0
i
r
0
j

r03

◆

=
1

8⇡µs

Z

R3

dr0G(r� r0)Jij(r
0)
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The inverse Laplace operator of the Oseen tensor can be evaluated in the spherical

coordinates, which gives that:

(6.36) r�2 [Jij(r)] =
3

4
r�ij �

1

4

rirj

r

Then, the double derivative in z-direction is straightforward to calculate, which

gives the real-space expression of the symmetric part as

(6.37)

G
(2)

(ij)
(r) = � �

2

8⇡µs

@
2

@z2

✓
3

4
r�ij �

1

4

rirj

r

◆

= � �
2

8⇡µs


3

4

✓
1� r

2

3

r2

◆
1

r
�ij +

1

4

✓
1� 3

z
2

r2

◆
rirj

r3

+
1

2

r3

r3
(�i3rj + ri�j3)�

1

2

1

r
�i3�j3

�

• the anti-symmetric part G(3)

[ij]
(r)

For the anti-symmetric part, the inverse Laplace operator can be calculated as:

(6.38)

r�2

h
F�1

h
G

(1)

[ij]

ii
= � �

8⇡µs

"ijk�l3r�2


�kl

r
� rkrl

r3

�

= � �

8⇡µs

"ijk�l3r�2

Z

R3

dr0G(r� r0)

✓
�ij

r0
�

r
0
i
r
0
j

r03

◆

= � �

8⇡µs

"ijk�l3r�2

Z

R3

dr0G(r� r0)Js

ij
(r0)

The inverse Laplace operator of Js

ij
(r) can be similarly evaluated in the spherical

coordinates, which gives that:

(6.39) r�2
⇥
J
s

ij
(r)

⇤
=

1

4
r�ij +

1

4

rirj

r
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Then, plugging it back and evaluate the double derivative in z-direction yields

the real-space expression of the anti-symmetric part as:

(6.40)

G
(3)

[ij]
(r) =

�
3

8⇡µs

"ijk�l3
@
2

@z2

✓
1

4
r�kl +

1

4

rkrl

r

◆

=
�
3

8⇡µs

"ijk�l3


1

4

✓
1� r

2

3

r2

◆
1

r
�kl �

1

4

✓
1� 3

z
2

r2

◆
rkrl

r3

�1

2

r3

r3
(�k3rl + rk�l3) +

1

2

1

r
�k3�l3

�

=
�
3

8⇡µs


3

4

✓
1� r

2

3

r2

◆
1

r
"ij3 �

3

4

✓
1� r

2

3

r2

◆
r3

r3
"ijkrk

�

Finally, the Green’s function in the real-space can be expressed as:

(6.41a) Gij(r) = G(ij)(r) +G[ij](r)

(6.41b) G(ij)(r) = G
(0)

(ij)
(r) +G

(2)

(ij)
(r) +O(�4)

(6.41c) G[ij](r) = G
(1)

[ij]
(r) +G

(3)

[ij]
(r) +O(�5)

where the explicit expressions of the symmetric Green’s functions are given by Eqn. 6.28a

and 6.37; the explicit expressions of the anti-symmetric Green’s functions are given by

Eqn. 6.28b and 6.40.
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6.3.4. Integral representation

With the Green’s function [Eqn. 6.41] of the odd Stokes’ equations [Eqn. 6.10] derived

in previous section, the flow field induced by a point force F at origin is:

(6.42) u
PF

i
(r) = Gij(r)Fj =

⇥
G(ij)(r) +G[ij](r)

⇤
Fj

As a starting point, only the first order e↵ect due to odd viscosity will be explored

here for simplicity but the formalism developed below in principle can be extended to

arbitrary orders. If we only retain the first order term of viscosity ratio � [Eqn. 6.28a

and 6.28b], the exact Green’s function reduces as

(6.43)

Gij(r) = G
(0)

(ij)
(r) +G

(1)

[ij]
(r) +O(�2)

⇡ 1

8⇡µ

⇥
Jij(r)� �J

o

ij
(r)

⇤

where Jij(r) and J
o

ij
(r) are the even [Eqn. 5.7] and odd Oseen tensor [Eqn. 6.29], respec-

tively. And from now on, the shear viscosity µs will be denoted as µ for short. Then, by

the linearity of the odd Stokes’ equation, the total flow field induced by a collection of

finite size rigid particles can be written as [see Sec. 5.2.1]:

(6.44) ui(x) = u
1
i
(x) +

1

8⇡µ

NX

↵=1

Z

S↵

⇥
Jij(r)� �J

o

ij
(r)

⇤
fj(y)dS(y)

where u
1
i

(i = x, y, z) is the background linear velocity field, S↵ is the surface of ↵-th

particle (↵ = 1, · · · , N), y is the location at the particle surface, fj(y) is the force density

(or traction force) distributed over the particle surface.



ar
ch
iv
e

280

6.3.5. Multipole expansion

Comparing with the integral representation of only even viscosity [Eqn. 5.9], the above

integral representation with odd viscosity has one additional term due to the first order

e↵ect of the odd viscosity ��Jo

ij
(r). However, the exactly same multipole expansion

procedure can still be carried out as detailed in Sec. 5.2.2. The whole procedure does not

depend on the explicit form of the Green’s function, therefore, the multipole expansion

of the integral representation with odd viscosity [Eqn. 6.44] can be written as:

(6.45)

ui(x) ⇡ u
1
i
(x) +

1

8⇡µ

NX

↵=1

⇥
Jij(x� x↵)F ↵

j
+Rij(x� x↵)T ↵

j
�Kijk(x� x↵)S↵

jk

⇤

� �

8⇡µ

NX

↵=1

⇥
J
o

ij
(x� x↵)F ↵

j
+R

o

ij
(x� x↵)T ↵

j
�K

o

ijk
(x� x↵)S↵

jk

⇤

where Jij, Rij and Kijk are the usual even viscosity propagators of force, torque and

stresslet, respectively [Eqn. 5.7, 5.21 and 5.24]. The additional flows contributed by the

odd viscosity are explicitly split out and the corresponding propagators can be obtained

by simply replacing the even Oseen tensor Jij with the odd Oseen tensor Jo

ij
:

J
o

ij
(r) =

"ij3

r
� "ijkrkr3

r3
(6.46a)

R
o

ij
(r) =

1

2
"iklrkJ

o

jl
(6.46b)

K
o

ijk
(r) =

1

2

⇥
rkJ

o

ij
(r) +rjJ

o

ik
(r)

⇤
(6.46c)

The above multipole expansion is truncated at the first order and such expansion can

proceed to higher order terms [see Sec. 5.2.2]. For rigid spherical particles, such expan-

sion terminate quickly and the exact solution can be obtained for isolated particles [see
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Eqn. 5.28]. However, for the next order of multipole expansion involved the gradients of

propagators, the results indeed depend on the properties of the propagators (for example,

Rij is anti-symmetric while R
o

ij
is symmetric). Therefore, those higher order terms need

to be constructed from singularity solutions of steady flow of each motion modes [121].

In the following, the proper correction terms for propagators due to the odd viscosity are

given directly and their proof will be postponed to Sec. 6.3.8:

(6.47)

ui(x) ⇡ u
1
i
(x) +

1

8⇡µ

NX

↵=1

✓
1 +

1

6
a
2r2

◆
Jij(x� x↵)F ↵

j
+Rij(x� x↵)T ↵

j

�
✓
1 +

1

10
a
2r2

◆
Kijk(x� x↵)S↵

jk

�

� �

8⇡µ

NX

↵=1

✓
1 +

1

6
a
2r2

◆
J
o

ij
(x� x↵)F ↵

j
�
✓
1 +

1

10
a
2r2

◆
R

o

ij
(x� x↵)T ↵

j

�
✓
1 +

1

10
a
2r2

◆
K

o

ijk
(x� x↵)S↵

jk

�

6.3.6. Generalized Faxén laws

As shown in Sec. 5.2.3, the Faxén laws provide a bridge for connecting the kinetic mo-

tions (U↵
,⌦↵

,E↵) with corresponding mechanical quantities (F�
,T�

,S�) of each parti-

cles. However, the validity of the Faxén laws with even viscosity relies on the Lorentz

Reciprocal Theorem (LRT) and symmetry properties of the Oseen tensor [121]. In the

following, a generalized LRT including odd viscosity will be derived firstly. Then, the

Faxén laws with odd viscosity will be proved based on the generalized LRT.
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6.3.6.1. generalized Lorentz reciprocal theorem. Suppose that (u(1)
,�(1)) and (u(2)

,�(2))

are two di↵erent solutions of the odd Stokes’ equations with the same geometry but sub-

jected to di↵erent boundary conditions. Due to the linearity of the viscosity tensor [Eqn.

6.6], the overall stress tensor can be separated into stresses contributed by even and odd

viscosity, i.e. � = �e + �o. Then, the generalized Lorentz Reciprocal Theorem states

that:

(6.48)

I

S

u(1) ·
⇥�
�(2)

e
+ �(2)

o

�
· n̂
⇤
dS �

Z

V

u(1) ·
⇥
r ·

�
�(2)

e
+ �(2)

o

�⇤
dV

=

I

S

u(2) ·
⇥�
�(1)

e
� �(1)

o

�
· n̂
⇤
dS �

Z

V

u(2) ·
⇥
r ·

�
�(1)

e
� �(1)

o

�⇤
dV

In the absence of the external forces (r · � = 0), it reduces as:

(6.49)

I

S

u(1) ·
⇥�
�(2)

e
+ �(2)

o

�
· n̂
⇤
dS =

I

S

u(2) ·
⇥�
�(1)

e
� �(1)

o

�
· n̂
⇤
dS

The proof of the above generalized version of LRT is very similar to the one detailed

in Sec. 5.2.4.1. The only di↵erence of the proof is to note that the constitutive relation

now becomes:

(6.50) �
(1)

ij
=
�
µ
e

ijkl
+ µ

o

ijkl

�
rlu

(1)

k
, �

(2)

ij
=
�
µ
e

ijkl
+ µ

o

ijkl

�
rlu

(2)

k

and relevant symmetry properties of even and odd viscosity tensors are:

(6.51) µ
e

ijkl
= µ

e

klij
, µ

o

ijkl
= �µ

o

klij

Then, one can easily prove the generalized Lorentz Reciprocal Theorem by following the

steps given in Sec. 5.2.4.1. As discussed in Sec. 6.3.1, those symmetry properties of
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viscosity tensors (ij $ kl) are actually connected to the time-reversal symmetry. The

additional minus sign of the odd viscosity under the time-reversal transformation is re-

flected in the odd stress terms in the generalized LRT.

6.3.6.2. generalized Faxén laws. With the generalized LRT, a generalized Faxén laws

can be derived. For example [121], considering a particle translates in the fluid with

velocity U1, which has a corresponding flow field u1, and another particle is stationary

but there is a point F applied at location y outside the particle. Then, the generalized

LRT gives that:

(6.52) U1 · F2 � u1(y) · F = 0

where F2 is the force acting on the stationary particle due to the corresponding flow field

u2(x) induced by the point force F. Because of the linearity of the odd Stokes’ equations,

the ambient flow for the translating particle can be expressed as:

(6.53) u1(x) =

⇢
Fe


Jij(x� ⇠)

8⇡µ

�
+ Fo

��Jo

ij
(x� ⇠)

8⇡µ

��
·U1

where Fe and Fo represent a linear function due to even and odd viscosity, respectively.

Fe and Fo may or may not have the same functional form. And ⇠ denotes the region

where source force densities are distributed. Plugging it back enables the elimination of

U1, which yields that

(6.54) F
2

i
=

⇢
Fe


Jji(x� ⇠)

8⇡µ

�
+ Fo

��Jo

ji
(x� ⇠)

8⇡µ

��
Fj
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Note the symmetry properties of both even and odd Oseen tensors:

(6.55a) Jji(x� ⇠) = Jij(x� ⇠), J
o

ji
(x� ⇠) = �J

o

ij
(x� ⇠)

(6.55b) Jij(x� ⇠) = Jij(⇠ � x), J
o

ij
(x� ⇠) = J

o

ij
(⇠ � x)

Therefore, the linear function F evaluated at the translating particle in the u1 problem

is the same linear function F evaluated at the stationary particle in the u2 problem, i.e.

(6.56) F
2

i
= Fe


Jij(⇠ � y)

8⇡µ
Fj

�
+ Fo


�
J
o

ij
(⇠ � y)

8⇡µ
Fj

�

As informed by the multipole expansion results 6.47] (or from the Green’s function di-

rectly), the flows contributed by even and odd viscosity induced by a point force F are:

(6.57a) ue(⇠) =
1

8⇡µ
lim
a!0

✓
1 +

a
2

6
r2

◆
Jij(⇠ � y)Fj =

Jij(⇠ � y)

8⇡µ
Fj

(6.57b) uo(⇠) = � �

8⇡µ
lim
a!0

✓
1 +

a
2

6
r2

◆
J
o

ij
(⇠ � y)Fj = ��

J
o

ij
(⇠ � y)

8⇡µ
Fj

where ue(⇠) and uo(⇠) denote the flow contributed by the even and odd viscosity, respec-

tively. Thus, the terms inside the brackets are identified as just the induced ambient flow,

which gives that

(6.58) F2 = Fe [u
e(⇠)]� Fo [u

o(⇠)]
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Finally, it shows that there is just an additional minus sign for the flow contributed

by the odd viscosity in the generalized Faxén laws. Following the above construction, one

can prove similar relations for torques and stresslets, i.e.

(6.59a) T = Te [u
e(⇠)]� To [u

o(⇠)]

(6.59b) S = Se [u
e(⇠)]� So [u

o(⇠)]

In the next, only additional new contributions due to the odd viscosity will be covered

as the Faxén laws for the even viscosity have been discussed in Sec. 5.2.3. Similar to

Eqn. 5.31, for a collection of spherical particles, the linear superposition enables writing

the ambient odd flow field uo0 induced by all other particles excluding the ↵-th particle

itself as:

(6.60)

u
o0
i
(x) ⇡ � �

8⇡µ

NX

�=1,� 6=↵

n
F
⇥
J
o

ij
(x� x�)

⇤
F
�

j
+ T

⇥
J
o

ij
(x� x�)

⇤
T
�

j
+ S

⇥
J
o

ij
(x� x�)

⇤
S
�

jk

o

where F
⇥
J
o

ij
(x� y)

⇤
, T

⇥
J
o

ij
(x� y)

⇤
and S

⇥
J
o

ij
(x� y)

⇤
denote linear functions which

describe the odd viscosity related responses to external forces, torques, stresslets respec-

tively. Based on the results derived in Eqn. 6.58, 6.59a and 6.59b, the kinetic motions of

↵-th particle due to the ambient odd flow uo0 induced by other particles (� 6= ↵) can be
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written as:

(6.61)

8
>>>>>><

>>>>>>:

U
↵

i
� U

1
i
(x↵) = �F [uo0

i
(x);x↵]

⌦
↵

i
�⌦

1
i
(x↵) = �T [uo0

i
(x);x↵]

E
↵

ij
� E

1
ij
(x↵) = �S[uo0

i
(x);x↵]

The above relations are the Faxén laws for the odd viscosity, which di↵er with the Faxén

laws for the even viscosity [Eqn. 5.33] by a minus sign.

6.3.7. Near-field mobility tensors

So far, the explicit functional forms of linear response functions F
⇥
J
o

ij
(x� y)

⇤
, T

⇥
J
o

ij
(x� y)

⇤

and S
⇥
J
o

ij
(x� y)

⇤
have not been determined. Their expressions may be obtained by di-

rectly comparing with the ambient flow formula given by the multipole expansion [Eqn.

6.47] just like the way did for even viscosity [Sec. 5.2.3]. However, the validity of Eqn.

6.47 has not been justified yet. Here, I am going to develop the theory in a slightly dif-

ferent order. First, the Rotne-Prager-Yamakawa (RPY) approximation will be used to

derive the near-field results in this section. After that, the Eqn. 6.47 will be proved as

the far-field expansion of the near-field results [Sec. 6.3.8].

6.3.7.1. integral forms of response functions. Based on the idea of RPY approxi-

mation [see Sec. 5.2.6], each force moments are assumed to be uniformly distributed over

the particle surface [Eqn. 5.54] and the integral form of ambient odd flow can therefore
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be expressed as:

(6.62)

u
o0
i
(x)� u

1
i
(x) ⇡ � �

8⇡µ

NX

�=1,� 6=↵

I

S�

J
o

ij
(x� y)

"
F
�

j

4⇡a2
+

3

8⇡a3
✏jklT

�

k
nldS +

3

4⇡a3
S
�

jk
nk

#
dS

Such integral form expression only replies on the Green’s function of the odd Stokes’

equations which are derived in Sec. 6.3.3. Then, the integral forms of response functions

F
⇥
J
o

ij
(x� y)

⇤
, T

⇥
J
o

ij
(x� y)

⇤
and S

⇥
J
o

ij
(x� y)

⇤
can be defined as:

F
⇥
J
o

ij
(x� y);S

⇤
=

1

4⇡a2

I

S

eJo

ij
(x� y)dS(y)(6.63a)

T
⇥
J
o

ij
(x� y);S

⇤
=

3

8⇡a3

I

S

eRo

ij
(x� y)dS(y)(6.63b)

S
⇥
J
o

ij
(x� y);S

⇤
=

3

4⇡a3

I

S

eKo

ijk
(x� y)dS(y)(6.63c)

where the integral is evaluated at the particle surface S and propagators of each force

moments are:

eJo

ij
(x� y) = J

o

ij
(x� y)(6.64a)

eRo

ij
(x� y) = J

o

ik
(x� y)"kjlnl(6.64b)

eKo

ijk
(x� y) =

1

2

⇥
J
o

ij
(x� y)nk + J

o

ik
(x� y)nj

⇤
(6.64c)

These are almost identical to the even viscosity case [Eqn. 5.55] with the even Oseen

tensor replaced with the odd Oseen tensor. Besides, the single spherical surface integrals
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of response functions can be evaluated analytically, which yield that [see Appx. B.2.2]:

(6.65a) M
o

F ij
(x) =

1

8⇡µ
F
⇥
J
o

ij
(x� y);S�

⇤
=

8
>><

>>:

⇣
1 + a

2

6
r2

⌘
J
o
ij(x�x�

)

8⇡µ

��x� x�
�� > a

1

12⇡µa
"ij3

��x� x�
��  a

(6.65b)

M
o

T ij
(x) =

1

8⇡µ
T
⇥
J
o

ij
(x� y);S�

⇤
=

8
>>>>>><

>>>>>>:

�
⇣
1 + a

2

10
r2

⌘
R

o
ij(x�x�

)

8⇡µ

��x� x�
�� > a

1

8⇡µa3

h
�3

5

⇣
xl � x

�

l

⌘
�lij3

�1

2
�ij

�
z � z

�
�
+ 1

2
�i3(xj � x

�

j
)
i ��x� x�

��  a

(6.65c)

M
o

Sijk
(x) =

1

8⇡µ
S
⇥
J
o

ij
(x� y);S�

⇤
=

8
>>>>>><

>>>>>>:

�
⇣
1 + a

2

10
r2

⌘
K

o
ijk(x�x�

)

8⇡µ

��x� x�
�� > a

1

40⇡µa3

nh
"ij3

⇣
xk � x

�

k

⌘
+ "ik3

⇣
xj � x

�

j

⌘i

+("ijm�k3 + "ikm�j3)
�
xm � x

�

m

� ��x� x�
��  a

6.3.7.2. the Faxén laws in integral form. With the integral forms of response func-

tions [Eqn. 6.63], the integral form of Faxén laws with odd viscosity can be written

explicitly as:

(6.66)

8
>>>>>>><

>>>>>>>:

U
↵

i
� U

1
i
(x↵) = �F [u0

i
(x);S↵] = � 1

4⇡a2

I

S↵

u
0
i
(x)dS↵(x)

⌦
↵

i
�⌦

1
i
(x↵) = �T [u0

i
(x);S↵] = � 3

8⇡a3

I

S↵

"ijknju
0
k
(x)dS↵(x)

E
↵

ij
� E

1
ij
(x↵) = �S[u0

i
(x);S↵] = � 3

4⇡a3

I

S↵

1

2

⇥
u
0
i
(x)nj + u

0
j
(x)ni

⇤
dS↵(x)
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where F [u0
i
(x);S↵], T [u0

i
(x);S↵] and S [u0

i
(x);S↵] are the same linear functions defined

by Eqn. 6.63 but applied to the ambient odd flow uo0(x) given by Eqn. 6.62 and evaluated

at the surface of ↵-th particle S
↵ instead.

6.3.7.3. near-field mobility tensors. Then, the integral form pair mobility tensors

(↵ 6= �) can be obtained by plugging the expression of ambient flow [Eqn. 6.62] into the

Faxén laws in integral form [Eqn. 6.66], which yields that:
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Again, the evaluations of such double surface integrals are rather tedious and details of

calculation can be found at Appx. B.3.2 and the explicit expressions of near-field odd

mobility tensors are also documented at Appx. B.5.3.
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6.3.7.4. self-mobility tensors. Traditionally, the self-mobility tensors are derived from

the analytical solutions of each motion modes for an isolated particle [see Sec. 5.2.3.1].

However, starting from only Green’s functions, the RPY approach provides an way to

derive the self-mobility tensors without solving each boundary-value problems as the

near-field mobility tensors [Appx. B.5.3] should reduce to the self-mobility tensors when

the separation distance goes to zero [see Sec. 5.2.6.4]. Below, the self-mobility tensors are

calculated by taking the limits of the near-field mobility tensors [Appx. B.5.1]:

M
o ↵↵

UF ij
= lim

r!0

M
o ↵�

UF ij
=

�

12⇡µa
"ij3(6.68a)

M
o ↵↵

UT ij
= lim

r!0

M
o ↵�

UT ij
= 0(6.68b)

M
o ↵↵

US ijk
= lim

r!0

M
o ↵�

US ijk
= 0(6.68c)

M
o ↵↵

⌦T ij
= lim

r!0

M
o ↵�

⌦T ij
=

�

16⇡µa3
"ij3(6.68d)

M
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M
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�3ijk(6.68e)

M
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ES ijkl
= lim

r!0

M
o ↵�

ES ijkl
=

�

80⇡µa3
[("ik3�lj + "il3�kj) + ("jk3�li + "jl3�ki)](6.68f)

6.3.8. Far-field mobility tensors

6.3.8.1. di↵erential forms of response functions. With the integral form of ambient

flow [Eqn. 6.62] and the far-field results of the single surface integrals of propagators [Eqn.

6.65,
��x� x�

�� > a], we can immediately show that the far-field expression of the near-field
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ambient flow [Eqn. 6.62] is:

(6.69)
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where the approximation sign is due to the many-body e↵ects and the above results are

exact for an infinitely dilute system. This justifies the validity of higher order correc-

tions in Eqn. 6.47 and the di↵erential form of linear response functions F
⇥
J
o

ij
(x� y)

⇤
,

T
⇥
J
o

ij
(x� y)

⇤
and S

⇥
J
o

ij
(x� y)

⇤
can be defined as:
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6.3.8.2. the Faxén laws in di↵erential form. With the di↵erential forms of response

functions [Eqn. 6.70], the di↵erential form of Faxén laws with odd viscosity can be written
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explicitly as:

(6.71)
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where F [u0
i
(x);S↵], T [u0

i
(x);S↵] and S [u0

i
(x);S↵] are the same linear functions defined

by Eqn. 6.70 but applied to the ambient odd flow uo0(x) given by Eqn. 6.69 and evaluated

at the surface of ↵-th particle S
↵ instead.

6.3.8.3. far-field mobility tensors. With the di↵erential form Faxén laws [Eqn. 6.71]

and the expression of ambient flow [Eqn. 6.69], the far-field pair mobility tensors (↵ 6= �)

can be derived as:
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Note that the odd Oseen tensor is also biharmonic, i.e. r4
J
o

ij
(r) = 0 [Appx. B.1.2],

which enables further simplification of mobility tensors. The explicit expressions of all

far-field odd mobility tensors can be found at Appx. B.5.2.

6.3.8.4. continuity between near-field and far-field mobility tensors. By con-

struction, the near-field mobility tensors [Appx. B.5.3] should match with the far-field

mobility tensors [Appx. B.5.2] continuously at the particle surface [Sec. 5.2.6.4]. Such

continuity requirement can be checked explicitly as:
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M
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(6.73a)

lim
r!2a�

M
o ↵�

UT ij
= lim

r!2a+
M

o ↵�

UT ij
(6.73b)

lim
r!2a�

M
o ↵�

US ijk
= lim

r!2a+
M

o ↵�

US ijk
(6.73c)

lim
r!2a�

M
o ↵�

⌦T ij
= lim

r!2a+
M

o ↵�

⌦T ij
(6.73d)

lim
r!2a�

M
o ↵�

⌦S ijk
= lim

r!2a+
M

o ↵�

⌦S ijk
(6.73e)

lim
r!2a�

M
o ↵�

ES ijkl
= lim

r!2a+
M

o ↵�

ES ijkl
(6.73f)

6.3.8.5. Symmetry of mobility tensors. Similar to the case of even viscosity [Sec.

5.2.4.2], there are also many symmetry relations of mobility tensors of odd viscosity

constrained by symmetry properties of system. For a complete list of symmetry relations,

please refer to Appx. B.5.4.

Due to the existence of odd viscosity, some symmetry properties of system are changed,

which yields di↵erent sets of symmetry relations comparing with those of even viscosity.
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There are symmetry relations of component indices (i, j, k, l) [Appx. B.5.4.1] and particle

indices (↵, �) [Appx. B.5.4.2], which reflects the space symmetry and the parity symmetry

of system, respectively. Besides, there are also symmetry relations constrained by the

generalized Lorentz Reciprocal Theorem [Appx. B.5.4.3], which reflects the time reversal

symmetry of system. Because all these relations can be proved similarly as shown for even

viscosity case [Appx. B.4.4], all these symmetry relations are provided without proof.

With all those symmetry relations of mobility tensors, it can be shown that the grand

mobility tensor of odd viscosity Mo

1 [Eqn. 6.72] is “symmetric” and only the upper (or

lower) half of the matrix needs to be computed as [Appx. B.5.4.4]:

(6.74) M
o ↵�

⌦F ij
= M

o ↵�

UT ij
, M

o ↵�

EF ijk
= �M

o ↵�

US kij
, M

o ↵�

ET ijk
= �M

o ↵�

⌦S kij

6.3.9. Full-range mobility tensors

Finally, with both near-field [Sec. 6.3.7] and far-field [Sec. 6.3.8] odd mobility tensors

constructed, the Stokesian Dynamics (SD) formalism can be modified to incorporate the

leading order e↵ects due to odd viscosity. Mathematically, the hydrodynamic interactions

in SD with both even and odd viscosity can be written as:

(6.75) M = Me

1 +Mo

1

where M is the full grand mobility tensor which contains hydrodynamic interactions from

both even and odd viscosity; Me

1 is the grand mobility tensor due to even viscosity, which

including both near-field [Eqn. 5.60 and Appx. B.4.3] and far-field [Eqn. 5.36 and Appx.

B.4.2] even mobility tensors; Mo

1 is the grand mobility tensor due to odd viscosity, which
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including both near-field [Eqn. 6.67 and Appx. B.5.3] and far-field [Eqn. 6.72 and Appx.

B.5.2] odd mobility tensors.

To be more clear, as the lubrication theory with odd viscosity has not been developed,

the above formalism is not exactly the same as the existing SD framework [Eqn. 5.63]

and in principle only works for well-separated particles i.e. dilute suspension. However,

empirically, this is not a strict limitation as long as the system of interests is not very

dense. In terms of numeric aspects, the grand mobility tensor M becomes a purely dense

matrix due to the lack of near-field lubrication theory with odd viscosity. Therefore, all

problem formalism and numeric techniques related to dense matrix discussed before [Sec.

5.2.7 and Sec. 5.3.6] still can directly apply to the new extended grand mobility tensor.

6.4. Simulation of a population of magnetic spinners

So far, this part of work is not fully complete yet and I will only sketch the plan

of using the developed odd Stokesian Dynamics [Sec. 6.3] to simulate a collection of

magnetic spinners in the near future. By the time of final revision, more simulation

results are expected.

6.4.1. Outlook of simulations

6.4.1.1. Equations of motion. Similar to the pure SD simulation discussed in Sec.

6.2, a magnetic torque, Tm = 8⇡µa3! and an e↵ective gravitational force Fg = mg sin ✓

are applied to each magnetic colloidal particle. Then, the deterministic translational and
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angular velocity of each particle can be computed by the mobility formulation, i.e.

(6.76)

0

B@
U↵ �U1

⌦↵ �⌦1

1

CA = M

0

B@
F↵

T↵

1

CA

where the grand mobility tensor M now should include contributions from both even and

odd viscosity, i.e. M = Mo

1 + Mo

1. The ratio between thermal energy and e↵ective

gravity, kBT/mg sin ✓, gives an estimation of the spread height of steady state density

profile of sedimentation, which makes the thermal fluctuation an intrinsic component

for sedimentation process, the equations of motion governing the dynamics of magnetic

spinners should be Brownian equations [Sec. 5.3.5 and Eqn. 5.78]:

dr

dt
= MF+

p
2kBTM1/2W + kBTr · M

6.4.1.2. chamber walls. Unlike the case for simulating a collection of Quincke rollers

[Sec. 5.3.6] constrained to a 2D plane, the simulation of a collection of magnetic spinners

is in fully 3D space confined by chamber walls. As sketched in Fig. 6.1, there are two

important walls: one is the titled chamber floor acting against the major component of

gravity (mg cos ✓) and another one is the bottom wall located along y-axis which stops

particles from further sedimentation. A wall-particle interaction is included to reproduce

the experimental conditions in a 3D setting.

6.4.1.3. simulations. In order to validate the development of odd Stokesian Dynamics,

the plan is to simulate the sedimentation of a collection of magnetic spinners to see whether

any significant e↵ects can be observed comparing with conventional even viscosity only

simulations. Due to the recent theoretical works [390], the odd viscosity is proportional to
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the activity level of the system, which is reflected by the external magnetic field frequency

!. Note that the magnetic torque Tm / ! is also proportional to the frequency, which

makes such attempt promising to uncover possible e↵ects with quadratic dependence

on system activity level. This is clearly beyond the traditional framework of Stokesian

Dynamics, where only linear dependence is expected.

6.5. Discussion and future works

There are still lots of open questions need to be addressed in these non-equilibrium

active fluid systems. For the continual development of the Stokesian Dynamics with odd

viscosity, the corresponding wall corrections [136,327] and lubrication theory [137,138,

143] are still missing and worth investigating. From a more general perspective, it’s also

very interesting to check whether the Fluctuation-Dissipation Theorem [398–404] still

holds in such active systems.

In terms of numeric technique development, it’s helpful to automate the numeric im-

plementation process for the Stokesian Dynamics community. Since the SD relies on the

analytic expressions of mobility tensors, which are ultimately derived from the Green’s

function of the system, the whole theoretical derivations of SD formalism can be auto-

mated by a Symbolic Algebra System, such as SymPy. Then, the corresponding analytic

expressions of mobility tensors can be generated automatically by simply changing the

fundamental Green’s function, such as replacing the Oseen tensor with the odd Oseen ten-

sor [Sec. 6.3]. More importantly, such symbolic expressions can be used for the generation

of kernels on targeted device (such as the CUDA code for GPU devices), where automatic

code optimization can be applied to have highly-e�cient device-specific implementations.
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Therefore, physicists can focus on the development of theory and leave the di�culties

of numeric implementation to computer. This idea of automation is not new and has

already been implemented in other fields such as LBM (lbmpy [405]), which is becoming

increasingly popular to archive superior performance by the design of a domain-specific

compiler.
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CHAPTER 7

Concluding Remarks

“More is di↵erent.”

—Anderson, P. W.

This work provides a holistic overview of research problems encountered while en-

gineering responses of soft materials at hierarchical length and time scales from both

individual [Part 1] and collective [Part 2] perspectives. I hope it helps us to appreciate

the famous quote — “More is di↵erent [406].” — from Anderson in 1972. The hybrid

between the “hard” and “soft” materials is creating a portfolio of diverse materials has

never been explored and this work only presents a glimpse of those emerging materials.

As shown in this work, understanding of soft material systems at di↵erent scales requires

theoretical and computational tools developed for the corresponding scales. For exam-

ple, the microscopic simulation technique, Molecular Dynamics, is employed for studying

morphologies of nanometer scale magnetoelastic shells [Chap. 2]; the mesoscopic simula-

tion technique, Stokesian Dynamics, is used for understanding hydrodynamic interactions

between micrometer scale colloidal particles [Chap. 5 and 6]; And the macroscopic simu-

lation technique, Finite Element Method, is utilized to solve the continuum model of the

millimeter scale hydrogel-metal hybrid for quantitative study their dynamic robotic behav-

iors [Chap. 4]. This work demonstrates clearly that a set of multi-scales theoretical and

computational tools is important for understanding the underlying mechanisms governing

the complex emerging behaviors in soft material systems. The fundamental first-principle
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approach is valuable for illuminating important elements at the atomic level. However,

when it comes to calculating the behaviors of a Avogadro number (NA) of atoms in a time

scale like a second, the “curse of dimensionality” always emerge [407], which is a common

issue in other domains such as optimization, sampling, machine learning and data mining,

etc. In order to deal with the dimensionality problem, all the multi-scales tools employed

in this work are “simplified” models with di↵erent level of coarse-graining and I hope

this work provides confirmative evidence that those coarse-grained models are useful for

understanding the responses of soft materials in a length and time scale more relevant to

our daily life. With the continual fusion between “hard” and “soft” materials, the syn-

thesis of new materials will keep inspiring the merging of separate branches of theoretical

descriptions of material responses and this work only provides several initial attempts.

More and more natural/synthetic soft materials with controlled responses are expected to

be engineered in the future as the understanding of those soft materials deepening. Con-

sidering the exceptional flexibility and bio-compatibility of soft materials, such advances

will lay a solid foundation for future living-system related technology development.
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[105] Davod Alizadehrad, Timothy Krüger, Markus Engstler, and Holger Stark. Simulat-
ing the complex cell design of trypanosoma brucei and its motility. PLOS Compu-
tational Biology, 11(1):e1003967, January 2015.

[106] S. Toppaladoddi and N. J. Balmforth. Slender axisymmetric stokesian swimmers.
Journal of Fluid Mechanics, 746:273–299, 2014.



ar
ch
iv
e

310

[107] Zhengyan Zhang, Hang Yuan, Yong Dou, Monica Olvera de la Cruz, and Kyle
J. M. Bishop. Quincke oscillations of colloids at planar electrodes. Phys. Rev. Lett.,
126:258001, Jun 2021.

[108] G. Quincke. Ueber rotationen im constanten electrischen felde. Ann. Phys.,
295(11):417–486, January 1896.

[109] W. Weiler. Zur darstellung elektrischer kraftlinien. Z phys. chem. Unterricht,
Iv:194–195, April 1893.

[110] Antoine Bricard, Jean-Baptiste Caussin, Nicolas Desreumaux, Olivier Dauchot, and
Denis Bartolo. Emergence of macroscopic directed motion in populations of motile
colloids. Nature, 503:95, November 2013.

[111] Bo Zhang, Benjamin Hilton, Christopher Short, Anton Souslov, and Alexey
Snezhko. Oscillatory chiral flows in confined active fluids with obstacles. Phys. Rev.
Research, 2:043225, Nov 2020.

[112] Bo Zhang, Andrey Sokolov, and Alexey Snezhko. Reconfigurable emergent patterns
in active chiral fluids. Nature Communications, 11(1):4401, 2020.

[113] Bo Zhang, Alexey Snezhko, and Andrey Sokolov. Guiding self-assembly of active
colloids by temporal modulation of activity. Phys. Rev. Lett., 128:018004, Jan 2022.

[114] Hamid Karani, Gerardo E. Pradillo, and Petia M. Vlahovska. Tuning the random
walk of active colloids: From individual run-and-tumble to dynamic clustering. Phys.
Rev. Lett., 123:208002, Nov 2019.

[115] Gerardo E. Pradillo, Hamid Karani, and Petia M. Vlahovska. Quincke rotor dynam-
ics in confinement: rolling and hovering. Soft Matter, 15:6564–6570, 2019.

[116] Debasish Das and Eric Lauga. Active particles powered by quincke rotation in a
bulk fluid. Phys. Rev. Lett., 122:194503, May 2019.

[117] J. R. Melcher and G. I. Taylor. Electrohydrodynamics: A review of the role of
interfacial shear stresses. Annu. Rev. Fluid Mech., 1(1):111–146, January 1969.

[118] D. A. Saville. Electrohydrodynamics: The taylor-melcher leaky dielectric model.
Annu. Rev. Fluid Mech., 29(1):27–64, January 1997.

[119] T. B. Jones. Quincke rotation of spheres. IEEE Transactions on Industry Applica-
tions, Ia-20(4):845–849, 1984.



ar
ch
iv
e

311

[120] Thomas B. Jones. Electromechanics of Particles. Cambridge University Press, 2005.

[121] Seppo J. Karrila Sangtae Kim. Microhydrodynamics - Principles and Selected Ap-
plications. Dover Publications, Inc., 2005.

[122] N. Pannacci, L. Lobry, and E. Lemaire. How insulating particles increase the con-
ductivity of a suspension. Phys. Rev. Lett., 99:094503, Aug 2007.

[123] Debasish Das and David Saintillan. Electrohydrodynamic interaction of spherical
particles under quincke rotation. Phys. Rev. E, 87:043014, Apr 2013.

[124] Edward N. Lorenz. Deterministic nonperiodic flow. J. Atmos. Sci., 20(2):130–141,
March 1963.

[125] E. Lemaire and L. Lobry. Chaotic behavior in electro-rotation. Physica A: Statistical
Mechanics and its Applications, 314(1):663–671, 2002.

[126] François Peters, Laurent Lobry, and Elisabeth Lemaire. Experimental observation
of lorenz chaos in the quincke rotor dynamics. Chaos, 15(1):013102, September 2005.

[127] Jochen Schmidt, Rodolphe Prignitz, Dirk Peschka, Andreas Münch, Barbara Wag-
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[370] Andreas Zöttl and Holger Stark. Emergent behavior in active colloids. J. Phys.:
Condens. Matter, 28(253001), 2016.

[371] M. Reza Shaebani, Adam Wysocki, Roland G. Winkler, Gerhard Gompper, and
Heiko Rieger. Computational models for active matter. Nature Reviews Physics,
2(4):181–199, 2020.

[372] Kai Qi, Elmar Westphal, Gerhard Gompper, and Roland G. Winkler. Emergence of
active turbulence in microswimmer suspensions due to active hydrodynamic stress
and volume exclusion. Communications Physics, 5(1):49, 2022.

[373] Qun-Li Lei and Ran Ni. Hydrodynamics of random-organizing hyperuniform fluids.
Proceedings of the National Academy of Sciences, 116(46):22983–22989, 2019.

[374] M. Belovs, M. Brics, and A. Cebers. Rotating-field-driven ensembles of magnetic
particles. Phys. Rev. E, 99:042605, Apr 2019.



ar
ch
iv
e

333

[375] Xiang Yang, Chenyang Ren, Kangjun Cheng, and H. P. Zhang. Robust boundary
flow in chiral active fluid. Phys. Rev. E, 101:022603, Feb 2020.

[376] JE Avron. Odd viscosity. Journal of statistical physics, 92(3):543–557, 1998.

[377] Tali Khain, Colin Scheibner, Michel Fruchart, and Vincenzo Vitelli. Stokes flows in
three-dimensional fluids with odd and parity-violating viscosities. Journal of Fluid
Mechanics, 934:A23, 2022.

[378] Arghya Samanta. Role of odd viscosity in falling viscous fluid. Journal of Fluid
Mechanics, 938:A9, 2022.

[379] Ming Han, Michel Fruchart, Colin Scheibner, Suriyanarayanan Vaikuntanathan,
Juan J. de Pablo, and Vincenzo Vitelli. Fluctuating hydrodynamics of chiral active
fluids. Nature Physics, 17(11):1260–1269, 2021.

[380] Yuto Hosaka, Shigeyuki Komura, and David Andelman. Hydrodynamic lift of a
two-dimensional liquid domain with odd viscosity. Phys. Rev. E, 104:064613, Dec
2021.

[381] Somayeh Farhadi, Sergio Machaca, Justin Aird, Bryan O. Torres Maldonado, Stan-
ley Davis, Paulo E. Arratia, and Douglas J. Durian. Dynamics and thermodynamics
of air-driven active spinners. Soft Matter, 14:5588–5594, 2018.

[382] Marcel Workamp, Gustavo Ramirez, Karen E. Daniels, and Joshua A. Dijksman.
Symmetry-reversals in chiral active matter. Soft Matter, 14:5572–5580, 2018.

[383] Quanliang Cao, Qi Fan, Qi Chen, Chunting Liu, Xiaotao Han, and Liang Li. Recent
advances in manipulation of micro- and nano-objects with magnetic fields at small
scales. Mater. Horiz., 7:638–666, 2020.

[384] Stefano Sacanna, Laura Rossi, and David J. Pine. Magnetic click colloidal assembly.
J. Am. Chem. Soc., 134(14):6112–6115, April 2012.
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APPENDIX A

Coordinate Systems

In this appendix, selected properties of both the spherical and bispherical coordinate

systems used in this work are compiled for reference [408].

A.1. Spherical coordinate system

• Coordinates transformation

(A.1)

8
>>>>>><

>>>>>>:

x = r sin ✓ cos�

y = r sin ✓ sin�

z = r cos ✓

where 0  r < 1, 0  ✓  ⇡, 0  � < 2⇡.

• Coordinate surfaces

(A.2)

8
>>>>>><

>>>>>>:

x
2 + y

2 + z
2 = r

2

tan ✓ = (x2 + y
2)1/2/z

tan� =
y

x
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• Base vectors transformation

(A.3)

0

BBBB@

x̂

ŷ

ẑ

1

CCCCA
=

0

BBBB@

sin ✓ cos� cos ✓ cos� � sin�

sin ✓ sin� cos ✓ sin� cos�

cos ✓ � sin ✓ 0

1

CCCCA

0

BBBB@

r̂

✓̂

�̂

1

CCCCA

(A.4)
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BBBB@
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✓̂

�̂

1

CCCCA
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BBBB@

sin ✓ cos� sin ✓ sin� cos ✓

cos ✓ cos� cos ✓ sin� � sin ✓

� sin� cos� 0
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CCCCA

0

BBBB@

x̂

ŷ

ẑ
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CCCCA

• Metrics

(A.5) gij = �kl
@x

k

@ui

@x
l

@uj

(A.6) g11 = 1, g22 = r
2
, g33 = r

2 sin2
✓, g

1/2 = r
2 sin ✓

(A.7) gij =

0

BBBB@

1 0 0

0 r
2 0

0 0 r
2 sin2

✓

1

CCCCA

• Christo↵el symbols

(A.8) �
�

µ⌫
=

1

2
g
�↵(g↵µ,⌫ + g↵⌫,µ � gµ⌫,↵)
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(A.9) �
r

µ⌫
=

0

BBBB@

0 0 0

0 �r 0

0 0 �r sin2
✓

1

CCCCA

(A.10) �
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• Covariant derivatives

(A.12) A
µ

;⌫
= A

µ

,⌫
+ �

µ

�⌫
A
�

(A.13) Aµ;⌫ = Aµ,⌫ � �
�

µ⌫
A�

• Covariant divergence

(A.14) A
µ

;µ
= A

µ

,µ
+ �

µ

�µ
A
� =

1
p
g
(
p
gA

µ)
,µ

(A.15) A
r

;r
= A

r

,r
+ �

r

�r
A
� = A

r

,r
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(A.16) A
✓

;✓
= A

✓

,✓
+ �

✓

�✓
A
� = A

✓

,✓
+

1

r
A

r

(A.17) A
�

;�
= A

�

,�
+ �

�

��
A
� = A

�

,�
+

1

r
A

r + cot ✓A✓

(A.18) A
µ

;µ
= A

r

,r
+ A

✓

,✓
+ A

�

,�
+

2

r
A

r + cot ✓A✓

• Laplace-Beltrami operator

(A.19) (rf)i = @
i
f = g

ij
@jf = g

ij
f,j

(A.20) r2
f =

1
p
g
(
p
gg

µ⌫
f,⌫),µ

A.2. Bispherical coordinate system

• Coordinates transformation

(A.21)

8
>>>>>>><

>>>>>>>:

x =
c sin ✓ cos 

cosh ⌘ � cos ✓

y =
c sin ✓ sin 

cosh ⌘ � cos ✓

z =
c sinh ⌘

cosh ⌘ � cos ✓

where �1 < ⌘ < 1, 0  ✓ < 2⇡, 0   < 2⇡.
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• Coordinate surfaces

(A.22)

8
>>>>>>><

>>>>>>>:

x
2 + y

2 + (z � c coth ⌘)2 =
c
2

sinh2
⌘

x
2 + y

2 + z
2 � 2c(x2 + y

2)1/2 cot ✓ = c
2

tan =
y

x

• Base vector transformations

(A.23)

0

BBBB@

ê⌘

ê✓

ê 

1

CCCCA
=

0

BBBB@

� sin ✓ cos sinh ⌘

cosh ⌘�cos ✓
� sin ✓ sin sinh ⌘

cosh ⌘�cos ✓
� cos ✓ cosh ⌘�1

cosh ⌘�cos ✓

(cos ✓ cosh ⌘�1) cos 

cosh ⌘�cos ✓

(cos ✓ cosh ⌘�1) sin 

cosh ⌘�cos ✓
� sin ✓ sinh ⌘

cosh ⌘�cos ✓

� sin cos 0

1

CCCCA

0

BBBB@

x̂

ŷ

ẑ

1

CCCCA

(A.24)

0

BBBB@

x̂

ŷ

ẑ

1

CCCCA
=

0

BBBB@

� sin ✓ cos sinh ⌘

cosh ⌘�cos ✓

(cos ✓ cosh ⌘�1) cos 

cosh ⌘�cos ✓
� sin 

� sin ✓ sin sinh ⌘

cosh ⌘�cos ✓

(cos ✓ cosh ⌘�1) sin 

cosh ⌘�cos ✓
cos 

� cos ✓ cosh ⌘�1

cosh ⌘�cos ✓
� sin ✓ sinh ⌘

cosh ⌘�cos ✓
0

1

CCCCA

0

BBBB@

ê⌘

ê✓

ê 

1

CCCCA

• Gradient operator

(A.25) r' =
1

c
(cosh ⌘ � cos ✓)


ê⌘
@'

@⌘
+ ê✓

@'

@✓
+

ê 
sin ✓

@'

@ 

�

• the Laplace’s equation

Separated solution:

(A.26) ' = (cosh ⌘ � cos ✓)1/2 H(⌘)⇥(✓) ( )
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Separated equation:

(A.27)

8
>>>>>>><

>>>>>>>:

d2
H

d⌘2
�
✓
1

4
+ ↵2

◆
H = 0

d2
⇥

d✓2
+ cot ✓

d⇥

d✓
+
⇣
↵2 �

↵3

sin2
✓

⌘
⇥ = 0

d2
 

d 2
+ ↵3 = 0

(1) when ↵2 = n(n+ 1) and ↵3 = m
2

(A.28)

8
>>>>>>>><

>>>>>>>>:

d2
H

d⌘2
�
✓
n+

1

2

◆2

H = 0

(1� ⇠
2)
d2
⇥

d⇠2
� 2⇠

d⇥

d⇠
+

✓
n(n+ 1)� m

2

1� ⇠2

◆
⇥ = 0

d2
 

d 2
+m

2
 = 0

(A.29)

8
>>>>>><

>>>>>>:

H = Ae
(n+

1
2 )⌘ +Be

�(n+
1
2 )⌘

⇥ = APm

n
(cos ✓) + BQm

n
(cos ✓)

 = A sin(m ) + B cos(m )

(2) when ↵2 = n(n+ 1) and ↵3 = 0

(A.30)

8
>>>>>>>><

>>>>>>>>:

d2
H

d⌘2
�
✓
n+

1

2

◆2

H = 0

(1� ⇠
2)
d2
⇥

d⇠2
� 2⇠

d⇥

d⇠
+

✓
n(n+ 1)� m

2

1� ⇠2

◆
⇥ = 0

d2
 

d 2
= 0
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(A.31)

8
>>>>>><

>>>>>>:

H = Ae
(n+

1
2 )⌘ +Be

�(n+
1
2 )⌘

⇥ = APn(cos ✓) + BQn(cos ✓)

 = A+B 

(3) when ↵2 = 0 and ↵3 = 0

(A.32)

8
>>>>>>>><

>>>>>>>>:

d2
H

d⌘2
� 1

4
H = 0

(1� ⇠
2)
d2
⇥

d⇠2
� 2⇠

d⇥

d⇠
= 0

d2
 

d 2
= 0

(A.33)

8
>>>>>><

>>>>>>:

H = Ae
⌘
2 +Be

� ⌘
2

⇥ = A+B ln cot(✓/2)

 = A+B 

• The general solution of Laplace’s equation

(A.34)

'(⌘, ✓, ) = (cosh ⌘ � cos ✓)
1
2

1X

n=1

1X

m=1

h
A

m

n
e
(n+ 1

2)⌘ +B
m

n
e
�(n+ 1

2)⌘
i
[Cm

n
Pm

n
(cos ✓) +D

m

n
Qm

n
(cos ✓)] [Em

n
sin(m ) + F

m

n
cos(m )]

+
1X

n=1

h
A

0

n
e
(n+ 1

2)⌘ +B
0

n
e
�(n+ 1

2)⌘
i ⇥

C
0

n
Pn(cos ✓) +D

0

n
Qn(cos ✓)

⇤ ⇥
E

0

n
+ F

0

n
 
⇤

+
h
A

0

0
e

⌘
2 +B

0

0
e
� ⌘

2

i 
C

0

0
+D

0

0
ln cot

✓
✓

2

◆� ⇥
E

0

0
+ F

0

0
 
⇤
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APPENDIX B

Stokesian Dynamics

This appendix compiles all Stokesian Dynamics (SD) related reference, which includes

derivatives of Oseen tensors [Appx. B.1], single surface integrals of Oseen tensors [Appx.

B.2], double surface integrals of Oseen tensors [Appx. B.3], explicit expressions of mobility

tensors [Appx. B.4 and B.5].

B.1. Derivatives of Oseen tensors

B.1.1. Oseen tensor with even viscosity

In this section, the explicit expressions of stokeslet, rotlet, stresslet derived for even vis-

cosity [Sec. 5.2] and their corresponding higher order derivatives are documented for

reference.

B.1.1.1. Propagators.

Jij(r) =
�ij

r
+

rirj

r3
(B.1a)

Rij(r) =
1

2
"iklrkJjl = ✏ijk

rk

r3
(B.1b)

Kijk(r) =
1

2
[rkJij(r) +rjJik(r)] =

1

r3
�jkri �

3

r5
rirjrk(B.1c)

B.1.1.2. Relevant derivatives.

(B.2a) rir =
ri

r
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(B.2b) r2
r =

2

r

(B.2c) rkJij(r) =
1

r3
(��ijrk + �jkri + �kirj)�

3

r5
rirjrk

(B.2d) rjJij(r) = 0

(B.2e)
rlrkJij(r) =

1

r3
(��ij�kl + �ik�jl + �jk�il) +

15

r7
rirjrkrl

� 3

r5
(��ijrkrl + �ikrjrl + �jkrirl + �ilrjrk + �jlrirk + �klrirj)

(B.2f) rkRij(r) = �1

2
"jmnrkrmJin(r)

(B.2g)

rlKijk(r) =
1

2
(rlrkJij(r) +rlrjJik(r))

=
1

r3
�il�jk +

15

r7
rirjrkrl

� 3

r5
(ri�jkrl + rirj�kl + ri�jlrk + �ilrjrk)

(B.2h)

1

2
(rlKijk +riKljk) =

1

r3
�il�jk +

15

r7
rirjrkrl �

3

r5
(ri�jkrl + �ilrjrk)

� 3

r5


1

2
(rirj�kl + rlrj�ki) +

1

2
(ri�jlrk + rl�jirk)

�

=
1

2
(rlKikj +riKlkj)

(B.2i)
1

2
(riKijk +riKijk) =

1

2
(rlKijj +riKljj) = 0
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(B.2j) r2
Jij(r) =

2�ij
r3

� 6rirj
r5

(B.2k) rkr2
Jij(r) = � 6

r5
(�ijrk + �jkri + �kirj) +

30

r7
rirjrk

(B.2l) r2
Rij(r) = �1

2
"jklrkr2

Jil(r) = 0

(B.2m) r2
Kijk(r) = rkr2

Jij(r)

(B.2n)

rlr2
Kijk(r) = rlrkr2

Jij(r)

= � 6

r5
(�ij�kl + �jk�il + �ki�jl)�

210

r9
rirjrkrl

+
30

r7
(�ijrkrl + �jkrirl + �kirjrl + �ilrjrk + �jlrirk + �klrirj)

(B.2o)
1

2

�
rlr2

Kijk +rir2
Kljk

�
= rlr2

Kijk

(B.2p) r4
Jij(r) = 0

B.1.2. Oseen tensor with odd viscosity

In this section, the explicit expressions of stokeslet, rotlet, stresslet derived for odd vis-

cosity [Sec. 6.3] and their corresponding higher order derivatives are documented for

reference.
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B.1.2.1. Propagators.

J
o

ij
(r) = "ijk�l3J

s

kl
(r) =

"ij3

r
� "ijkrkr3

r3
, J

s

ij
(r) =

�ij

r
� rirj

r3

(B.3a)

R
o

ij
(r) =

1

2
"iklrkJ

o

jl
= R

s

ijk
(r)�k3, R

s

ijk
(r) =

1

2
[rjJ

s

ik
(r)� �ijrlJ

s

kl
(r)]

(B.3b)

K
o

ijk
(r) =

1

2

⇥
rkJ

o

ij
(r) +rjJ

o

ik
(r)

⇤
= K

s

ijkl
(r)�l3, K

s

ijkl
(r) =

1

2
["ijmrkJ

s

ml
(r) + "ikmrjJ

s

ml
(r)]

(B.3c)

B.1.2.2. Relevant derivatives.

(B.4a) rkJ
o

ij
(r) = "ijl�m3rkJ

s

lm
(r), rkJ

s

ij
(r) = � 1

r3
(�ijrk + �kirj + �jkri) +

3

r5
rirjrk

(B.4b) rjJ
o

ij
(r) = 0, rjJ

s

ij
(r) = �2ri

r3

(B.4c)
rlrkJ

s

ij
(r) = � 1

r3
(�ij�kl + �ik�jl + �jk�il)�

15

r7
rirjrkrl

+
3

r5
(�ijrkrl + �ikrjrl + �jkrirl + �ilrjrk + �jlrirk + �klrirj)

(B.4d) r2
J
o

ij
(r) = � 2

r3
"ij3 + 6

"ijkrkr3

r5
, r2

J
s

ij
(r) = � 2

r3
�ij +

6rirj
r5

(B.4e) rkr2
J
s

ij
(r) =

6

r5
(�ijrk + �jkri + �kirj)�

30

r7
rirjrk
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(B.4f) rjr2
J
s

ij
(r) = 0

(B.4g) rjrkJ
s

ik
(r) = �2�ij

r3
+

6rirj
r5

(B.4h)
rlrkr2

J
s

ij
(r) =

6

r5
(�ij�kl + �il�jk + �ik�jl) +

210

r9
rirjrkrl

� 30

r7
(�ijrkrl + �klrirj + �jkrirl + �jlrirk + �ikrjrl + �ilrjrk)

(B.4i) R
o

ij
(r) = R

s

ijk
(r)�k3, R

s

ijk
(r) =

1

2r3
(�ijrk � �kirj � �jkri) +

3

2r5
rirjrk

(B.4j)
rlR

s

ijk
(r) = � 1

2r3
(��ij�kl + �ik�jl + �jk�il)�

15

2r7
rirjrkrl

+
3

2r5
(��ijrkrl + �ikrjrl + �jkrirl + �ilrjrk + �jlrirk + �klrirj)

(B.4k) "ilmrlR
s

mjk
(r) = � 1

r3
"ijk +

3

r5
"ijlrlrk

(B.4l) r2
R

s

ijk
(r) =

1

2
rjr2

J
s

ik
(r)

(B.4m)

K
s

ijkl
(r) =

1

2
["ijmrkJ

s

ml
(r) + "ikmrjJ

s

ml
(r)]

= � 1

2r3
("ijlrk + "iklrj)�

1

2r3
("ijm�kl + "ikm�lj) rm +

3

2r5
("ijmrk + "ikmrj) rmrl
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(B.4n)

rmK
s

ijkl
(r) =

1

2
["ijnrmrkJ

s

nl
(r) + "iknrmrjJ

s

nl
(r)]

= � 1

2r3
[("ijl�km + "ikl�jm) + ("ijm�lk + "ikm�lj)]

� 15

2r7
("ijnrnrk + "iknrnrj) rlrm

+
3

2r5
[("ijlrkrm + "iklrjrm) + ("ijmrlrk + "ikmrlrj)

+"ijnrn (�klrm + �kmrl + �mlrk) + "iknrn (�jlrm + �jmrl + �mlrj)]

(B.4o)
"imnrmK

s

njkl
(r) =

1

2
(�ijrk + �ikrj)rmJ

s

ml
(r)�rkrjJ

s

il
(r)

=
1

r3
�il�kj +

15

r7
rirjrkrl �

3

r5
(�ilrkrj + �klrirj + �jlrirk + �jkrirl)

(B.4p)

r2
K

s

ijkl
(r) =

1

2

⇥
"ijmrkr2

J
s

ml
(r) + "ikmrjr2

J
s

ml
(r)

⇤

=
3

r5
("ijlrk + "iklrj) +

3

r5
("ijm�kl + "ikm�jl) rm � 15

r7
("ijmrk + "ikmrj) rmrl

(B.4q)

rmr2
K

s

ijkl
(r) =

1

2

⇥
"ijnrmrkr2

J
s

nl
(r) + "iknrmrjr2

J
s

nl
(r)

⇤

= � 3

r5
[("ijl�km + "ikl�jm) + ("ijm�lk + "ikm�lj)]

� 105

r9
("ijnrnrk + "iknrnrj) rlrm

+
15

r7
[("ijlrkrm + "iklrjrm) + ("ijmrlrk + "ikmrlrj)

+"ijnrn (�klrm + �kmrl + �mlrk) + "iknrn (�jlrm + �jmrl + �mlrj)]

(B.4r) "imnrmr2
K

s

njkl
(r) = �rjrkr2

Jil(r)
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(B.4s) r4
J
o

ij
(r) = 0

B.2. Single surface integrals of Oseen tensors

This section documents single spherical surface integrals of both the even and odd

Oseen tensor, which are useful for deriving the near-field mobility tensors [Sec. 5.2.6 and

6.3.7] by the Rotne-Prager-Yamakawa (RPY) approximation. As shown in Fig. B.1, the

center of �-th (� = 1 · · ·N) particle is set as the origin of the Cartesian coordinate system

(x, y, z) and also the origin of the spherical coordinate system (r, ✓,�). Then, any arbitrary

position at the spherical surface can be written as y = an̂, where a is the particle radius

and n̂ = (sin ✓ cos�, sin ✓ sin�, cos ✓) is the outer unit surface normal vector. Without loss

of generality, the observation point is assumed to be along the z-axis, i.e. x = (0, 0, ⇢).

Therefore, the relative position vector r = x�y = (�a sin ✓ cos�,�a sin ✓ sin�, ⇢�a cos ✓)

and relative distance r = |r| =
p

a2 + ⇢2 � 2a⇢ cos ✓. For simplicity, following results

are evaluated for x along z-axis only but the general results can be easily obtained by

permutation as long as each axis is equivalent.
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x

y

z

Figure B.1. A schematic drawing defines the coordinate system and nota-
tions for single spherical surface integral evaluations.

B.2.1. Single surface integrals of the even Oseen tensor

B.2.1.1. Propagators. Corresponding propagators used in the surface integral evalua-

tions are [Sec. 5.2.6]:

eJij(r) =
�ij

r
+

rirj

r3
(B.5a)

eRij(r) = Jik(r)"kjlnl(B.5b)

eKijk(r) =
1

2
[Jij(r)nk + Jik(r)nj](B.5c)

B.2.1.2. Single surface integrals. Here, single spherical surface integrals of the stokeslet,

rotlet and stresslet are calculated:
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(1) surface integral of stokeslet

(B.6a)

M̂
F

ij
(⇢ẑ) =

a

4⇡a2

I

S�

eJij(⇢ẑ� y)dS(y) =

8
>><

>>:

⇣
1

⇢
+ 1

3

1

⇢3

⌘
�ij +

⇣
1

⇢
� 1

⇢3

⌘
�i3�j3 ⇢ > a

4

3
�ij ⇢  a

(B.6b)

M̂
F

ij
(⇢ẑ)

sym

= M̂
F

ij
(x) =

8
>><

>>:

�
1

r
+ 1

3

1

r3

�
�ij +

�
1

r
� 1

r3

�
rirj

r2
=
�
1 + 1

6
r2

�
Jij(x� x�)

��x� x�
�� > a

4

3
�ij

��x� x�
��  a

(2) surface integral of rotlet

(B.7a) M̂
T

ij
(⇢ẑ) =

3a2

8⇡a3

I

S

eRij(⇢ẑ� y)dS(y) =

8
>><

>>:

1

⇢2
⇢ > a

⇢"ij3 ⇢  a

(B.7b) M̂
T

ij
(⇢ẑ)

sym

= M̂
T

ij
(x) =

8
>><

>>:

"ijk
rk
r3

= Rij(x� x�)
��x� x�

�� > a

"ijkrk

��x� x�
��  a

(3) surface integral of stresslet

(B.8a)

M̂
S

ijk
(⇢ẑ) =

3a2

4⇡a3

I

S

eKijk(x� y)dS(y)

=

8
>><

>>:

6

5

1

⇢4
�3ijk � ( 1

⇢2
� 1

⇢4
)�i3�jk + 3

⇣
1

⇢2
� 1

⇢4

⌘
�i3�j3�k3 ⇢ > a

6

5
⇢�3ijk ⇢  a
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(B.8b)

M̂
S

ijk
(⇢ẑ)

sym

= M̂
S

ijk
(x) =

8
>><

>>:

6

5

1

r4
rl
r
�lijk �

�
1� 1

r2

�
1

r2
ri
r
�jk + 3

�
1� 1

r2

�
1

r2

rirjrk

r3

��x� x�
�� > a

6

5
rl�lijk

��x� x�
��  a

=

8
>><

>>:

�
�
1 + 1

10
r2

�
Kijk(x� x�)

��x� x�
�� > a

6

5
rl�lijk

��x� x�
��  a

B.2.2. Single surface integrals of the odd Oseen tensor

B.2.2.1. Propagators. Corresponding propagators used in the surface integral evalua-

tions are [Sec. 6.3.7]:

eJo

ij
(r) = "ijk�l3J

s

kl
(r), J

s

ij
(r) =

�ij

r
� rirj

r3

(B.9a)

eRo

ij
(r) = J

o

ik
"kjlnl = eRs

ijk
(r)�k3, eRs

ijk
(r) = niJ

s

jk
(r)� �ijJ

s

lk
(r)nl

(B.9b)

eKo

ijk
(r) =

1

2

⇥
J
o

ij
(r)nk + J

o

ik
(r)nj

⇤
= eKs

ijkl
(r)�l3, eKs

ijkl
(r) =

1

2
["ijmJ

s

ml
(r)nk + "ikmJ

s

ml
(r)nj]

(B.9c)

B.2.2.2. Single surface integrals. Here, single spherical surface integrals of the stokeslet,

rotlet and stresslet are calculated:
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(1) surface integral of stokeslet

(B.10a)

M̂
s

F ij
(⇢ẑ) =

a

4⇡a2

I

S�

eJs

ij
(⇢ẑ� y)dS(y) =

8
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⇣
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⇢
� 1

3
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⌘
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⇣
1

⇢
� 1
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(B.10b) M̂
s

F ij
(⇢ẑ)

sym

= M̂
s

F ij
(x) =

8
>><

>>:

�
1

r
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3

1

r3

�
�ij �

�
1

r
� 1
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�
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r2

��x� x�
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2

3
�ij

��x� x�
��  a

(B.10c)

M̂
o

F ij
(x) = "ijk�l3M̂

s

Fkl
(x)

=

8
>><

>>:

�
1

r
� 1

3

1

r3

�
"ij3 �

�
1

r
� 1
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�
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2

3
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��x� x�
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=

8
>><
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�
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6
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�
J
o
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2

3
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(2) surface integral of rotlet

(B.11a)

M̂
s

T ijk
(⇢ẑ) =
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⇣
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5
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2
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1

2
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(B.11b)
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s

T ijk
(⇢ẑ)
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s

T ijk
(x)

=

8
>>>>>><

>>>>>>:
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�
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(B.11c)
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�
R

o

ij
(x� x�)

��x� x�
�� > a

�3

5
rl�lij3 � 1

2
�ijr3 +

1

2
�i3rj

��x� x�
��  a

(3) surface integral of stresslet

(B.12a)

M̂
s

Sijkl
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⇣
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(B.12b)
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(⇢ẑ)

sym

= M̂
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(B.12c)
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B.3. Double surface integrals of Oseen tensors

This section documents double spherical surface integrals of both the even and odd

Oseen tensor, which are useful for deriving the near-field mobility tensors [Sec. 5.2.6 and

6.3.7] by the Rotne-Prager-Yamakawa (RPY) approximation. As shown in Fig. B.2, the

center of �-th (� = 1 · · ·N) particle x� is set as the origin of the Cartesian coordinate

system (x, y, z) and also the origin of the spherical coordinate system (r, ✓,�). Then, any
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arbitrary position at the �-th spherical particle’s surface can be written as y = an̂, where

a is the particle radius and n̂ = (sin ✓ cos�, sin ✓ sin�, cos ✓) is the outer unit surface

normal vector. Without loss of generality, the position of ↵-th particle is assumed to be

along the z-axis, i.e. x↵ = (0, 0, ⇢). Therefore, arbitrary position at ↵-th particle surface

relative to the center of �-th particle is r = x�x� = (a sin ✓ cos�, a sin ✓ sin�, ⇢+ a cos ✓)

and relative distance is r = |r| =
p

a2 + ⇢2 + 2a⇢ cos ✓. The critical polar angle used

for distinguishing non-overlapping (✓ < ✓0) and overlapping (✓ > ✓0) regions is defined

as ✓0 = arccos
�
� ⇢

2a

�
. For simplicity, following results are evaluated for x↵ along z-axis

only but the general results can be easily obtained by permutation as long as each axis is

equivalent.

x

y

z

Figure B.2. A schematic drawing defines the coordinate system and nota-
tions for double spherical surface integral evaluations.
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B.3.1. Double surface integrals of the even Oseen tensor

Note that the first surface integrals of the even Oseen tensor on the �-th particle surface

have already been evaluated in Appx. B.2.1, the following calculations will only focus on

the second surface integral on the ↵-th particle surface.

B.3.1.1. M↵�

UF
.

(B.13)

M̂
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UF ij
(⇢ẑ) =

a
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4⇡a2

I

S↵

M̂
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4

3
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8
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◆
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8
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(B.15)
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B.3.1.2. M↵�

UT
.

(B.16)
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(B.17) M̂
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✓
1

2
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r

◆
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��x↵ � x�
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(B.18)
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a
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B.3.1.3. M↵�

US
.

(B.19)
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(⇢ẑ) =

1

4⇡a2
3

4⇡a3

I

S↵

I

S�

eKijk(x� y)dS↵dS� = � 1

4⇡a2

I

S↵

M̂
S

ijk
(x� x�)dS↵

=

✓
3

5
� ⇢

4

◆
⇢�3ijk �

⇢
2

48
�i3�jk +

⇢
2

16
�i3�j3�k3, ⇢ < 2a



ar
ch
iv
e

359

(B.20)

M̂
↵�

US ijk
(⇢ẑ)
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(B.21)
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B.3.1.4. M↵�
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(B.23)
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(B.24)
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B.3.1.5. M↵�
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(B.27)
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B.3.1.6. M↵�
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(B.29)
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(B.30)
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B.3.2. Double surface integrals of the odd Oseen tensor

Note that the first surface integrals of the odd Oseen tensor on the �-th particle surface

have already been evaluated in Appx. B.2.2, the following calculations will only focus on

the second surface integral on the ↵-th particle surface.
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(⇢ẑ)

sym

= M̂
s ↵�

⌦T ijk
(x)

= �1

2

✓
1� 9

16
r +

1

32
r
3

◆
"ijk +

3

64
(6r � r

3)"ijl
rlrk

r2
,

��x↵ � x�
�� < 2a

(B.45)

M̂
o ↵�

⌦T ij
(x) = M̂

s ↵�

⌦T ijk
(x)�k3

= �1

2

✓
1� 9

16
r +

1

32
r
3

◆
"ij3 +

3

64
(6r � r

3)"ijl
rlr3

r2
,

��x↵ � x�
�� < 2a

(B.46)

M̂
o ↵�

⌦T ij
(x) = � 3

8⇡a3

I

S↵

"iklnkM̂
o

T lj
(x� x�)dS↵

=
3a2

8⇡a3

I

S↵

"iklnk

✓
1 +

1

10
r2

◆
R

o

lj
(x� x�)dS↵

=

✓
1 +

1

10
r2

◆
3a2

8⇡a3

I

S↵

"iklnk


1

2
"lmnrmJ

o

jn
(x� x�)

�
dS↵

=

✓
1 +

1

10
r2

◆
1

2
"iklrm

3a2

8⇡a3

I

S↵

J
o

jn
(x� x�)"nlmnkdS

↵

=

✓
1 +

1

10
r2

◆
1

2
"iklrk

3a2

8⇡a3

I

S↵

J
o

jn
(x� � x)"nlmnmdS

↵

=

✓
1 +

1

10
r2

◆
1

2
"iklrk

3a2

8⇡a3

I

S↵

eRo

jl
(x� � x)dS↵

= �
✓
1 +

1

10
r2

◆✓
1 +

1

10
r2

◆
1

2
"iklrkR

o

jl
(x� � x↵)

=

✓
1 +

1

10
r2

◆✓
1 +

1

10
r2

◆
1

2
"iklrkR

o

lj
(x↵ � x�),

��x↵ � x�
�� > 2a



ar
ch
iv
e

367
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1
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◆
1

2

⇥
rlK

o

kij
(x� � x↵) +rkK

o

lij
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⇤

=

✓
1 +

1
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r2

◆✓
1 +

1

10
r2

◆
1

2

⇥
rlKkij(x

↵ � x�) +rkKlij(x
↵ � x�)

⇤
,

��x↵ � x�
�� > 2a

B.4. Explicit expressions of the even mobility tensors

In this section, the explicit expressions of even mobility tensors are documented for

reference. All N particles are assumed to be equal size of radius a, i.e. a↵ = a
� = a. All

distance quantities are normalized by the particle radius, such as r =
��x↵ � x�

�� /a. All

mobility expressions are normalized by 8⇡µan, where the exponent n is chose to make

the corresponding mobility tensor dimensionless, i.e. M̂
↵�

XY ij
= 8⇡µanM ↵�

XY ij
. The

hat symbol ˆ indicates the quantity is dimensionless; The subscript XY means the

mobility tensor describes the coupling between kinetic motions X (X = U , ⌦ or E) and

force moments Y (Y = F , T or S); The superscript ↵� specifies the mobility tensor

describes the interaction between ↵-th and �-th particles (↵, � = 1 · · ·N); The subscript

ijkl indicates the Cartesian components of the mobility tensor (i, j, k, l = 1, 2, 3). �ij is

the Kronecker delta and "ijk is the right-handed Levi-Civita symbol. Only six out of nine
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mobility tensors are given and the rest can be obtained by the symmetry relations of

mobility tensors [Sec. B.4.4].

B.4.1. Self-mobility tensors

The dimensionless expressions of mobility tensors for a single isolated particle (↵ = �)

are shown below and its corresponding dimensional forms can be found at Eqn. 5.37 [Sec.

5.2.4].

M̂
↵↵

UF ij
=

4

3
�ij(B.55a)

M̂
↵↵

UT ij
= 0(B.55b)

M̂
↵↵

US ijk
= 0(B.55c)

M̂
↵↵

⌦T ij
= �ij(B.55d)

M̂
↵↵

⌦S ijk
= 0(B.55e)

M̂
↵↵

ES ijkl
=

6

5
�ijkl(B.55f)

As the stresslet is symmetric and traceless, �ijkl is chosen as the fourth-rank deviatoric

traceless unit tensor:

(B.56) �ijkl =
1

2
(�ik�jl + �il�jk)�

1

3
�ij�kl
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B.4.2. Pair-mobility tensors (r > 2a)

The definitions of far-field mobility tensors between two di↵erent non-overlapping particles

(↵ 6= � and r > 2a) are given at Eqn. 5.36 [Sec. 5.2.4] and its corresponding dimensionless

explicit expressions are shown below:

M̂
↵�

UF ij
=

1

r

✓
1 +

2

3r2

◆
�ij +

✓
1� 2

r2

◆
rirj

r2

�
(B.57a)

M̂
↵�

UT ij
=

1

r3
"ijkrk(B.57b)

M̂
↵�

US ijk
=

✓
3

r2
� 8

r4

◆
rirjrk

r3
+

✓
� 1

r2
+

8

5r4

◆
�jk

ri

r
+

8

5r4

⇣
�ij

rk

r
+ �ik

rj

r

⌘
(B.57c)

M̂
↵�

⌦T ij
= �1

4
r2

Jij = � 1

2r3

✓
�ij �

3rirj
r2

◆
(B.57d)

M̂
↵�

⌦S ijk
= �1

2
"ilmrlKmjk = � 3

2r3

⇣
"imj

rmrk

r2
+ "imk

rmrj

r2

⌘
(B.57e)

M̂
↵�

ES ijkl
=

✓
� 1

r3
+

6

5r5

◆
�ij�kl +

6

5r5
(�ik�lj + �il�kj)(B.57f)

+

✓
3

r3
� 6

r5

◆⇣
�kl

rirj

r2
+ �ij

rkrl

r2

⌘

+

✓
3

2r3
� 6

r5

◆⇣
�lj

rirk

r2
+ �li

rkrj

r2
+ �kj

rirl

r2
+ �ik

rlrj

r2

⌘

+

✓
�15

r3
+

42

r5

◆
rirjrkrl

r4

B.4.3. Pair-mobility tensors (r  2a)

The definitions of near-field mobility tensors between two di↵erent overlapping particles

(↵ 6= � and r  2a) are given at Eqn. 5.60 [Sec. 5.2.6] and its corresponding dimensionless

explicit expressions are shown below:
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M̂
↵�

UF ij
=

4

3

✓
1� 9r

32

◆
�ij +

3r

32

rirj

r2

�
(B.58a)

M̂
↵�

UT ij
=

1

2

✓
r � 3

8
r
2

◆
"ijk

rk

r
(B.58b)

M̂
↵�

US ijk
=

✓
3

10
r � 1

8
r
2

◆⇣
�ij

rk

r
+ �ik

rj

r

⌘
+

✓
�1

5
r +

1

16
r
2

◆
ri

r
�jk +

r
2

16

rirjrk

r3
(B.58c)

M̂
↵�

⌦T ij
=

✓
1� 27

32
r +

5

64
r
3

◆
�ij +

✓
9

32
r � 3

64
r
3

◆
rirj

r2
(B.58d)

M̂
↵�

⌦S ijk
=

✓
� 9

32
r +
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64
r
3

◆⇣
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rmrk
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+ "imk
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⌘
(B.58e)
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✓
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5
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◆
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✓
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5
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8
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◆
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✓
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+ �ij

rkrl

r2

⌘

+

✓
� 3

32
r +

3

128
r
3

◆⇣
�lj

rirk

r2
+ �li

rkrj

r2
+ �kj

rirl

r2
+ �ik
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⌘
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B.4.4. Symmetry relations

A complete list of symmetry relations of mobility tensors [Sec. 5.2.4.2] between component

indices (i, j, k, l), pairs indices (↵, �) and coupling indices (X, Y ) (X = U , ⌦ or E and

Y = F , T or S) is compiled below.
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B.4.4.1. Components indices.

M̂
↵�

UF ij
= M̂

↵�

UF ji
(B.59a)

M̂
↵�

UT ij
= �M̂

↵�

UT ji
(B.59b)

M̂
↵�

US ijk
= M̂

↵�

US ikj
(B.59c)

M̂
↵�

⌦T ij
= M̂

↵�

⌦T ji
(B.59d)

M̂
↵�

⌦S ijk
= M̂

↵�

⌦S ikj
(B.59e)

M̂
↵�

ES ijkl
= M̂

↵�

ES ijlk
= M̂

↵�

ES jikl
(B.59f)

B.4.4.2. Pairs indices.

M̂
↵�

UF ij
= M̂

�↵

UF ij
(B.60a)

M̂
↵�

UT ij
= �M̂

�↵

UT ij
(B.60b)

M̂
↵�

US ijk
= �M̂

�↵

US ijk
(B.60c)

M̂
↵�

⌦T ij
= M̂

�↵

⌦T ij
(B.60d)

M̂
↵�

⌦S ijk
= M̂

�↵

⌦S ijk
(B.60e)

M̂
↵�

ES ijkl
= M̂

�↵

ES ijkl
(B.60f)

B.4.4.3. Lorentz reciprocal theorem. Based on the Lorentz Reciprocal Theorem

[Sec. 5.2.4.1], six symmetry relations can be derived by applying it to di↵erent mo-

tion modes. As the proof for many particle cases are similar to the single particle case,

detailed proof for both cases are only provided for the translation-force mobility tensor
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case as an example. For rest of symmetry relations, only proof of single particle case will

be presented (particle indices such as ↵ and � will be omitted for brevity).

M̂
↵�

UF ij
= M̂

�↵

UF ji
(B.61a)

M̂
↵�

⌦T ij
= M̂

�↵

⌦T ji
(B.61b)

M̂
↵�

ES ijkl
= M̂

�↵

ES klij
(B.61c)

M̂
↵�

⌦F ij
= M̂

�↵

UT ji
(B.61d)

M̂
↵�

EF ijk
= M̂

�↵

US kij
(B.61e)

M̂
↵�

ET ijk
= M̂

�↵

⌦S kij
(B.61f)

• translation-force mobility tensor MUF .

For a single particle, let’s assume the particle move at velocity U↵ due to a force

F↵, and the corresponding surface velocity u and surface stress � are solutions

of the Stokes’ equation. Then, consider two set of possible solutions:

(U↵

1
,F↵

1
) : (u1,�1 · n̂)|x=S↵ =

✓
U↵

1
,
F↵

1

4⇡a2

◆

(U↵

2
,F↵

2
) : (u2,�2 · n̂)|x=S↵ =

✓
U↵

2
,
F↵

2

4⇡a2

◆

By the LRT, it gives that U↵

1
·F↵

2
= U↵

2
·F↵

1
. And also note the mobility relations,

U↵

1
=M↵↵

UF
· F↵

1
,U↵

2
=M↵↵

UF
· F↵

2
. Therefore,

M
↵↵

UF ij
F

↵

1 j
F

↵

2 i
= M

↵↵

UF ij
F

↵

2 j
F

↵

1 i
= M

↵↵

UF ji
F

↵

2 i
F

↵

1 j
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As the choices of F↵

1
and F↵

2
are arbitrary, it requires that

(B.62) M
↵↵

UF ij
= M

↵↵

UF ji

For a pair of particles, the proof is similar by considering two sets of possible

solutions:

(U↵

1
,F↵

1
) : (u1,�1 · n̂)|x=S↵ =

✓
U↵

1
,
F↵

1

4⇡a2

◆
, (U�

1
,F�

1
) : (u1,�1 · n̂)|x=S� =

 
U�

1
,
F�

1

4⇡a2

!

(U↵

2
,F↵

2
) : (u2,�2 · n̂)|x=S↵ =

✓
U↵

2
,
F↵

2

4⇡a2

◆
, (U�

2
,F�

2
) : (u2,�2 · n̂)|x=S� =

 
U�

2
,
F�

2
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!

And again the LRT yields that U↵

1
·F↵

2
+U�

1
·F�

2
= U↵

2
·F↵

1
+U�

2
·F�

1
. Also note

the mobility relations: U↵

1
=M↵↵

UF
· F↵

1
+M↵�

UF
· F�

1
,U↵

2
=M↵↵

UF
· F↵

2
+M↵�

UF
· F�

2
.

Therefore,

M
↵�

UF ij
F

�

1 i
F

↵

2 j
+M

�↵

UF ij
F

↵

1 i
F

�

2 j
= M

↵�

UF ij
F

�

2 i
F

↵

1 j
+M

�↵

UF ij
F

↵

2 i
F

�

1 j

For the above identity to hold, it requires that

(B.63) M
↵�

UF ij
= M

�↵

UF ji

• translation-torque mobility tensor MUT and rotation-force mobility tensor M⌦F .

Consider a solution (u1,�1) corresponds to a particle translates at velocity U1

due a torque T1; And another solution (u2,�2) corresponds to a particle rotates
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at angular velocity ⌦2 due a force F2, i.e.

(U1,T1) : (u1,�1 · n̂)|x=S
=

✓
U

1

i
,

3

8⇡a3
"ijkT
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j
nk
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j
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F
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i
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i
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It gives that

(B.64) M
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UT ij
= M

↵↵

⌦F ji

This can be generalized to many particles case:

(B.65) M
↵�

UT ij
= M

�↵

⌦F ji

• translation-stresslet mobility tensor MUS and strain-force mobility tensor MEF .
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=
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2
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k
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It gives that

(B.66) M
↵↵

US ijk
= M

↵↵

EF jki

This can be generalized to many particles case:

(B.67) M
↵�

US ijk
= M

�↵

EF jki

• rotation-torque mobility tensor M⌦T .

(⌦1,T1), (u1,�1 · n̂)|x=S
=

✓
"ijk⌦

1

j
xk,

3
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"ijkT
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j
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◆
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xk,
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"ijkT
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◆
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= ⌦
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. Also note the mobility relations, ⌦1
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⌦T ij
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⌦F ij
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2

j
. Therefore,

M
↵↵
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It gives that

(B.68) M
↵↵

⌦T ij
= M

↵↵

⌦T ji

This can be generalized to many particles case:

(B.69) M
↵�

⌦T ij
= M

�↵

⌦T ji
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• rotation-stresslet mobility tensor M⌦S and strain-torque mobility tensor MET .

(⌦1,S1), (u1,�1 · n̂)|x=S
=

✓
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It gives that

(B.70) M
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⌦S ijk
= M
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ET jki

This can be generalized to many particles case:
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↵�
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ET jki

• strain-stresslet mobility tensor MES.
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=

✓
E

1

ij
xj,

3

4⇡a3
S
1

ij
nj

◆

(E2,S2), (u2,�2 · n̂)|x=S
=

✓
E

2

ij
xj,

3

4⇡a3
S
2

ij
nj

◆

By the LRT, E1

ij
S
2

ij
= E

2

ij
S
1

ij
. Also note the mobility relations, E1

ij
= M

↵↵

ES ijkl
S
1

kl
, E

2

ij
=

M
↵↵

ES ijkl
S
2

kl
. Therefore,

M
↵↵

ES ijkl
S
1

kl
S
2

ij
= M

↵↵

ES ijkl
S
2

kl
S
1

ij
= M

↵↵

ES klij
S
2

ij
S
1

kl



ar
ch
iv
e

380

It gives that

(B.72) M
↵↵

ES ijkl
= M

↵↵

ES klij

This can be generalized to many particles case:

(B.73) M
↵�

ES ijkl
= M

�↵

ES klij

B.4.4.4. Definition of the Faxén laws. There are also three additional symmetry

relations of pair-mobility can be derived directly from its definitions:

M̂
↵�

⌦F ij
= M̂

↵�

UT ij
(B.74a)

M̂
↵�

EF ijk
= �M̂

↵�

US kij
(B.74b)

M̂
↵�

ET ijk
= M̂

↵�

⌦S kij
(B.74c)

• rotation-force mobility tensor M⌦F .

By the definition of the rotation-force mobility tensor [Eqn. 5.33], it gives that
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• strain-force mobility tensor MEF .

By the definition of the strain-force mobility tensor [Eqn. 5.33], it gives that

(B.76)
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• strain-torque mobility tensor MET .

By the definition of the strain-torque mobility tensor [Eqn. 5.33], it gives that
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B.5. Explicit expressions of the odd mobility tensors

In this section, the explicit expressions of odd mobility tensors are documented for

reference. All N particles are assumed to be equal size of radius a, i.e. a↵ = a
� = a. All
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distance quantities are normalized by the particle radius, such as r =
��x↵ � x�

�� /a. All

mobility expressions are normalized by 8⇡µan, where the exponent n is chose to make

the corresponding mobility tensor dimensionless, i.e. M̂
o ↵�

XY ij
= 8⇡µanM o ↵�

XY ij
. The

hat symbol ˆ indicates the quantity is dimensionless and the additional superscript o

means it’s an odd viscosity related quantity; The subscript XY means the mobility tensor

describes the coupling between kinetic motions X (X = U , ⌦ or E) and force moments

Y (Y = F , T or S); The superscript ↵� specifies the mobility tensor describes the

interaction between ↵-th and �-th particles (↵, � = 1 · · ·N); The subscript ijkl indicates

the Cartesian components of the mobility tensor (i, j, k, l = 1, 2, 3). �ij is the Kronecker

delta and "ijk is the right-handed Levi-Civita symbol. Only six out of nine mobility

tensors are given and the rest can be obtained by the symmetry relations of mobility

tensors [Sec. B.5.4]. Only odd mobility tensors in the first order of the dimensionless

viscosity ratio � (odd viscosity µo over even viscosity µs) are derived. If necessary, higher

order corrections can be computed in a similar manner [Sec. 6.3.3].

B.5.1. Self-mobility tensors

The dimensionless expressions of mobility tensors for a single isolated particle (↵ = �)

are shown below and its corresponding dimensional forms can be found at Eqn. 6.68 [Sec.

6.3.7].
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B.5.2. Pair-mobility tensors (r > 2a)

The definitions of far-field mobility tensors between two di↵erent non-overlapping par-

ticles (↵ 6= � and r > 2a) are given at Eqn. 6.72 [Sec. 6.3.8] and its corresponding

dimensionless explicit expressions are shown below:
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B.5.3. Pair-mobility tensors (r  2a)

The definitions of near-field mobility tensors between two di↵erent overlapping particles

(↵ 6= � and r  2a) are given at Eqn. 6.67 [Sec. 6.3.7] and its corresponding dimension-

less explicit expressions are shown below:
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B.5.4. Symmetry relations

A complete list of symmetry relations of odd mobility tensors [Sec. 6.3.8.5] between

component indices (i, j, k, l), pairs indices (↵, �) and coupling indices (X, Y ) (X = U , ⌦

or E and Y = F , T or S) is compiled below.
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B.5.4.2. Pairs indices.
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B.5.4.3. generalized Lorentz reciprocal theorem. Based on the generalized Lorentz

Reciprocal Theorem [Sec. 6.3.6.1], six symmetry relations can be derived by applying it

to di↵erent motion modes. The proofs of these symmetry relations are highly similar to

the case of even viscosity [Appx. B.4.4.3] and will be skipped here.
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B.5.4.4. Definition of the Faxén laws.
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APPENDIX C

Index

background flow, 205

Bjerrum length, 113

Brownian equation, 233

Car-Parrinello MD, 42

Cauchy-Green strain tensor, 140

charge fluctuation theory, 113

constitutive relation, 144

continuity equation, 79

convection flux, 80

covariant divergence, 110

critical field strength, 99

Debye length, 85

Debye–Hückel theory, 85

deformation gradient tensor, 139

dense matrix, 224

di↵usion flux, 80

di↵usion-limited, 115

dipole-dipole interactions, 228

Einstein notation, 141, 198

Einstein relation, 81

elastic strain energy density, 145

electric migration flux, 80

electrohydrodynamics, 82

electroneutrality condition, 85, 120

Engineering strain, 141

Föppl-von Kármán number, 43

Faxén laws, 206

di↵erential form, 206

integral form, 221

fiber-reinforced magnetoelastic

materials, 157

first Piola-Kirchho↵ stress tensor, 141

Flory-Huggins model, 152

fluctuation-dissipation theorem, 233
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Fourier transformation, 270

full grand mobility tensor, 224

generalized Faxén laws, 283, 285

generalized Lorentz reciprocal theorem,

282

grand mobility tensor, 207

Green’s function, 197

Green-Lagrange strain tensor, 140

hyperelastic models, 145

ideal hard magnets, 154

incompressible condition, 80

integral representation, 198

isochoric invariants, 147

isotropic materials, 146

Laplace’s equation, 85, 89

leaky dielectric, 72, 82, 83

leaky dielectric model, 71, 76

Lorentz reciprocal theorem, 206, 209,

282

magnetic modulus, 48

magnetic scalar potential, 154

magnetic stress, 166

magnetoelastic parameter, 50

material coordinates, 138

material derivative, 78

Maxwell stress tensor, 78

Maxwell-Wagner relaxation time, 96

mobility matrix, 90

mobility problems, 224

multipole expansion, 92

Navier-Stokes equation, 78

Neo-Hookean model, 147

Nernst-Planck equation, 80, 116

Newtonian fluids, 196

no-slip boundary condition, 79

odd Oseen tensor, 278

odd Stokes’ equations, 269

odd viscosity, 266

Ohm’s law, 85

Ohmic conductivity, 80

Oseen tensor, 197
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perturbation analysis, 119

photochemistry, 150

point particle, 106

Poisson’s equation, 77

Poisson-Nernst-Planck equations, 116

positive definite, 212

principle of virtual works, 143

Quincke rotation, 71

reaction rate constants, 83

resistance problems, 225

rotational invariants, 146

rotlet, 201

Rotne-Prager-Yamakawa approximation,

218

scalar resistance functions, 214

second Piola-Kirchho↵ stress tensor, 141

sedimentation, 261

self-mobilities, 222

sparse matrix, 224

spatial coordinates, 138

spherical harmonics, 93

standard reinforcement model, 149

Stokes drag, 81

Stokes’ equations, 90, 197

stokeslet, 199

stresslet, 202

strong electrolyte, 83

strong form, 143

super-paramagnetic particles, 44

transversely isotropic materials, 148

unit displacement tensors, 214

Voronoi cell, 48

weak contribution, 168

weak electrolyte, 83, 84

weak form, 143

work-conjugation, 159
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